Dark Adaptation in the Eyes of Lake and Sea Populations of Mysis Relicta Shrimp: Dynamics of Changes in the Isomeric Composition of Retinals, Retinols, and Retinal Esters

Author(s):  
T. Feldman ◽  
M. Yakovleva ◽  
M. Lindström ◽  
M. Viljanen ◽  
K. Donner ◽  
...  
2020 ◽  
Vol 206 (6) ◽  
pp. 871-889
Author(s):  
Tatiana Feldman ◽  
Marina Yakovleva ◽  
Martta Viljanen ◽  
Magnus Lindström ◽  
Kristian Donner ◽  
...  

Abstract We have studied dark-adaptation at three levels in the eyes of the crustacean Mysis relicta over 2–3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cis retinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity (by ERG). We compare two model populations (“Sea”, Sp, and “Lake”, Lp) inhabiting, respectively, a low light and an extremely dark environment. 11-cis retinal reached 60–70% of the pre-exposure levels after 2 weeks in darkness in both populations. The only significant Lp/Sp difference in the retinoid cycle was that Lp had much higher levels of retinol, both basal and light-released. In Sp, rhodopsin restoration and eye photoresponse recovery parallelled 11-cis retinal regeneration. In Lp, however, even after 3 weeks only ca. 25% of the rhabdoms studied had incorporated new rhodopsin, and eye photosensitivity showed only incipient recovery from severe depression. The absorbance spectra of the majority of the Lp rhabdoms stayed constant around 490–500 nm, consistent with metarhodopsin II dominance. We conclude that sensitivity recovery of Sp eyes was rate-limited by the regeneration of 11-cis retinal, whilst that of Lp eyes was limited by inertia in photoreceptor membrane turnover.


1972 ◽  
Author(s):  
David J. Florip ◽  
Robert W. Bayer
Keyword(s):  

1966 ◽  
Author(s):  
Gosta Ekman ◽  
Jan Hosman ◽  
Ulf Berglund
Keyword(s):  

2020 ◽  
Vol 6 (1) ◽  
pp. 039
Author(s):  
Trie Omitha Purba ◽  
Suparmi Suparmi ◽  
Dahlia Dahlia

The study aimed to determine the effect of rebon shirmp (mysis relicta) protein hydrolisate fortification to the sago noodles and to observe the characteristics of the sago noodles produced. The research was carried on in February – April 2019 in the  Laboratory of Fish Processing Technology, Integrated Laboratories, and the Fisheries and Marine Chemistry Laboratories at the Universitas Riau. The method used was the experimental method, designedas a non-factorial complete randomized design. The treatment conducted was addingof rebon shrimp protein hydrolysate at 4 level concentrations (0%, 5%, 10% dan 15%). The variables assessed were the quality of organoleptic (appearance, texture, odor, flavor) and the proximate composition. The results showed that the proteinhydrolysate of rebon shrimp at concentration of 15% was the best treatment and in accordance to the quality standards of dried noodles (SNI 01-2974-1996), indicated bythe highest organoleptic qualityof the dried noodles produced, including: the appearance that was brown, less attractive, whole, less neat; the texture that was dry and compact; the aroma that was quite fragrant, spesific rebon shrimp; and the taste that was quite tasty and shrimp flavored. The proximate composition ofthe best product was presented by the content of moisture, ash, fat, protein, and carbohydrate at 7.55%,1.02%, 0.17%, 16.76%, and 74.49%, respectively.Keywords: Hydrolysate protein, rebon shrimp, sago noodles


1989 ◽  
Author(s):  
Shihong Gao ◽  
Jialong Wu ◽  
Dongxian Hao ◽  
Changming Kang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bethany E. Higgins ◽  
Giovanni Montesano ◽  
Alison M. Binns ◽  
David P. Crabb

AbstractIn age-related macular degeneration (AMD) research, dark adaptation has been found to be a promising functional measurement. In more severe cases of AMD, dark adaptation cannot always be recorded within a maximum allowed time for the test (~ 20–30 min). These data are recorded either as censored data-points (data capped at the maximum test time) or as an estimated recovery time based on the trend observed from the data recorded within the maximum recording time. Therefore, dark adaptation data can have unusual attributes that may not be handled by standard statistical techniques. Here we show time-to-event analysis is a more powerful method for analysis of rod-intercept time data in measuring dark adaptation. For example, at 80% power (at α = 0.05) sample sizes were estimated to be 20 and 61 with uncapped (uncensored) and capped (censored) data using a standard t-test; these values improved to 12 and 38 when using the proposed time-to-event analysis. Our method can accommodate both skewed data and censored data points and offers the advantage of significantly reducing sample sizes when planning studies where this functional test is an outcome measure. The latter is important because designing trials and studies more efficiently equates to newer treatments likely being examined more efficiently.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 183
Author(s):  
Kevin M Mendez ◽  
Janice Kim ◽  
Inês Laíns ◽  
Archana Nigalye ◽  
Raviv Katz ◽  
...  

The purpose of this study was to analyze the association between plasma metabolite levels and dark adaptation (DA) in age-related macular degeneration (AMD). This was a cross-sectional study including patients with AMD (early, intermediate, and late) and control subjects older than 50 years without any vitreoretinal disease. Fasting blood samples were collected and used for metabolomic profiling with ultra-performance liquid chromatography–mass spectrometry (LC-MS). Patients were also tested with the AdaptDx (MacuLogix, Middletown, PA, USA) DA extended protocol (20 min). Two measures of dark adaptation were calculated and used: rod-intercept time (RIT) and area under the dark adaptation curve (AUDAC). Associations between dark adaption and metabolite levels were tested using multilevel mixed-effects linear modelling, adjusting for age, gender, body mass index (BMI), smoking, race, AMD stage, and Age-Related Eye Disease Study (AREDS) formulation supplementation. We included a total of 71 subjects: 53 with AMD (13 early AMD, 31 intermediate AMD, and 9 late AMD) and 18 controls. Our results revealed that fatty acid-related lipids and amino acids related to glutamate and leucine, isoleucine and valine metabolism were associated with RIT (p < 0.01). Similar results were found when AUDAC was used as the outcome. Fatty acid-related lipids and amino acids are associated with DA, thus suggesting that oxidative stress and mitochondrial dysfunction likely play a role in AMD and visual impairment in this condition.


Sign in / Sign up

Export Citation Format

Share Document