Диагностика ударных повреждений монолитных и сотовых углепластиков с помощью ультразвуковых волн Лэмба

2021 ◽  
pp. 33-43
Author(s):  
М.В. Бурков ◽  
А.В. Еремин ◽  
А.В. Бяков ◽  
П.С. Любутин ◽  
С.В. Панин

The paper presents the results on Lamb waves based technique for impact damage detection and severity identification. The PZT network operates in the round-robin mode changing the actuator and sensor roles of the transducers in order to detect the response of the system in the presence of damage. The monitoring is performed via the analysis of three parameters: change of the amplitude (dA), change of the energy (dP) and cross-correlation (NCC) of the signals in baseline and damaged state. Testing of laminate CFRPs shows that the damage location is estimated within the 5–15 mm error, while the computed Damage index linearly is dependent on the applied impact energy. For honeycomb CFRPs the NCC parameter do not provide accurate results, however, the other parameters allow identification within the 5–20 mm error and reflect accurate data on the severity of the damage.

2021 ◽  
Vol 57 (2) ◽  
pp. 114-124
Author(s):  
M. V. Burkov ◽  
A. V Eremin ◽  
A. V. Byakov ◽  
P. S. Lyubutin ◽  
S. V. Panin

Abstract The paper presents the results on application of Lamb waves based technique for impact damage detection and severity identification. The PZT network operates in the round-robin mode changing the actuator and sensor roles of the transducers in order to detect the response of the system in the presence of damage. The monitoring is performed via the analysis of three parameters: change of the amplitude (dA), change of the energy (dP) and cross-correlation (NCC) of the signals in baseline and damaged state. Testing of laminate CFRPs shows that the damage location is estimated with an error of 5–15 mm, while the computed Damage index is linearly dependent on the applied impact energy. For honeycomb CFRPs the NCC parameter do not provide accurate results, however, other parameters allow identification within the 5–20 mm error and reflect accurate data on the severity of the damage.


Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.


2019 ◽  
Vol 24 (No 1) ◽  
pp. 56-67
Author(s):  
Kundan Kumar ◽  
Prabir Kumar Biswas ◽  
Nirjhar Dhang

In this paper, we propose a damage detection and localization algorithm for steel truss bridges using a data-driven approach under varying environmental and loading conditions. A typical steel truss bridge is simulated in ANSYS for data generation. Damage is introduced by reducing the stiffness of one or more members of the truss bridge. The simulated acceleration time-history signals are used for the purpose of damage diagnosis purpose. Vibration data collected from healthy bridges are processed through principal component analysis (PCA) to find the reduced size weighted feature vectors in model space. Unknown test vibration data (healthy or damaged) finds the closest match of its reduced size model from the training database containing only healthy vibration data. The residual error between the spread of closest healthy vibration data and unknown test vibration data is processed to determine damage location and severity of the damage to the structure. A comparative study between a proper orthogonal decomposition (POD) based damage detection algorithm and proposed algorithm is presented. The results show that the proposed algorithm is efficient to identify the damage location and assess the severity of damage, called as the Damage Index (DI), under varying environmental and moving load conditions.


2007 ◽  
Vol 26-28 ◽  
pp. 1265-1268 ◽  
Author(s):  
Chan Yik Park

Various damage index (DI) algorithms of detecting changes such as a loosen bolt and a delamination development in a composite structure were examined using ultrasonic Lamb waves generated by embedded piezoelectric active sensors. The DI is a single value that is a function of response signal’s attenuation due to any damage or changes in a structure. Various DI algorithms such as active damage interrogation (ADI), time domain root men square (RMS), short time Fourier Transform (STFT) and time reversal (TR) were discussed. For experimental validation, a composite stiffened panel was used, and loosen bolt damage and low-velocity- impact damage were tested. In order to pitch and catch Lamb waves, surface mounted PZTs (lead zirconate titanate) were used. According to the DI algorithms, appropriate ultrasonic guided Lamb waves were selected for actuators. Each set of DI algorithm and drive signal showed different characteristics to detect the damage.


2016 ◽  
Vol 713 ◽  
pp. 191-194 ◽  
Author(s):  
Laure Sainfort ◽  
Zahra Sharif Khodaei ◽  
M.H. Ferri Aliabadi

In this work the optimal configuration of transducers for damage detection and localization has been investigated. A particular interest is given to three optimization methods: mini-max, average Probability of Non Detection (POND) and ray tracing approach, coupled with genetic algorithm. After optimal configurations have been computed for each technique, they are experimentally tested and compared on a composite panel with one or two damages by generating and receiving Lamb waves signals. Damage detection is carried out with the Probability Based Damage Index Method (PBDIM). It was found that, in most cases, the ray tracing method and the average POND technique give better results, with a good detection of damages in comparison to the minimax POND technique, even if the latter seems numerically better.


2005 ◽  
Author(s):  
Ajit K. Mal ◽  
Frank J. Shih ◽  
Fabrizio Ricci ◽  
Sauvik Banerjee

Sign in / Sign up

Export Citation Format

Share Document