scholarly journals Low frequency seismic noise before and after the Sumatra megaearthquake December 26, 2004

2019 ◽  
Vol 485 (4) ◽  
pp. 497-501
Author(s):  
G. A. Sobolev

The paper aims at detailed study of the structure of seismic noise before and after the Sumatra mega-earthquake with M = 9.1 of December 26, 2004. The records by IRIS seismic stations in the different regions of the world, equipped with STS-1 seismometers providing ground motion velocity recording in a broad range of periods from 0.2 to 360 s with the use of standard equipment, form the empirical base of the research. In the records by each station, the intervals free of the earthquakes, interference of manmade impacts, and noise enhancement due to cyclone propagation were selected. The noise bursts in the ranges 40-80, 80-160, and 160-320 s differ by the shape and time of occurrence suggesting different sources of their generation. The absence of the correlation between the noise recordings at the neighboring seismic stations spaced 102 - 103 km apart indicates the influence of local processes. The noise reflects turbulent processes in the Earth’s atmosphere whereas the exponential growth of the noise with the increase of the oscillation period is consistent with A.N. Kolmogorov’s theory of locally isotropic turbulence in the atmosphere. The noise amplitude after the Sumatra mega-earthquake with M = 9.1 of December 26, 2004 has increased by a factor of 1.5-2 in January 2005 compared to January 2004 irrespective of the location of a seismic station.

2019 ◽  
Vol 8 (1) ◽  
pp. 12-20
Author(s):  
Sesar Prabu Dwi Sriyanto

Seismic noise disrupts the earthquake observation system due to the frequency and amplitude of seismic noise similar to the earthquake signal. The filter process is one of the methods that can be used to reduce seismic noise. In this study, the Wiener filter algorithm was designed with the Decision-Directed method for Apriori SNR estimation. This filter was chosen because it is adaptive, so it can adjust to environmental conditions without requiring manual parameter settings. The data used are earthquake signals that occur in the Palu area, Central Sulawesi, which are recorded on PKA29 temporary seismic station from February 3 to April 28, 2015. After each signal data has been filtered, then it is evaluated by calculating SNR differences before and after filtering, the signal's dominant frequency, and the cross-correlation of the signal before and after filtering. As a result, the Wiener filter is able to reduce the noise content in earthquake signals according to noisy frequencies before earthquake signals. The impact is that SNR has increased with an average of 8.056 dB. In addition, this filter is also able to maintain the shape of earthquake signals. This is indicated by the normalization value of the cross-correlation between signals before and after the filter which ranges from 0.703 to 1.00.


2021 ◽  
Author(s):  
Gergana Georgieva ◽  
Liliya Dimitrova ◽  
Dragomir Dragomirov

<p>The seismicity caused by the movement of glaciers was discovered only 30-40 years ago, and it was initially assumed that only glaciers in Greenland create this type of seismicity. Today, a significant part of the earthquakes registered by the Antarctic seismic stations are of glacial origin. In recent years, scientists' interest in studying the seismic activity of glaciers and its relationship to various environmental factors has increased due to the response of the ice mass to climate change.</p><p>The interest of studying seismicity of Antarctica has increased in the last decade with installation of a growing number of seismic stations in the region.</p><p>In 2015, with the first installation of the LIVV seismic station, Bulgarian seismologists began studying the seismicity of the Perunika Glacier, located on Livingston Island, Antarctica. Between 2015 and 2018, seismic recordings were made only in the astral summer, and from January 2020 the seismic station was installed for year-round operation. The seismic station is located near the glacier.</p><p>In this study, an approach to analyze the ice generated events recorded during all working period of the LIVV station is presented. Depending on the source mechanism and therefore the different waveform shapes, several types of icequakes and earthquakes are distinguished.</p><p><span>Registered icequakes are more than 16000. Its duration varies between less than a second and more than a minute. A few events are several minutes long. We</span> <span>have noticed that from 2015 to 2020, the number of glacier events is increasing while its duration is decreasing. </span></p><p>Localization of the ice generated events with duration below 1 s is calculated. In the localization procedure, a velocity model developed for the area of the seismic station is applied. The produced icequake epicenters are grouped in several clusters within the Perunika glacier. The nature of these glacier events are still studying.</p><p><span>Another approach to study the seismic activity of the glacier is carried out by estimating the ambient seismic noise. Frequent and spectral distribution of the power of seismic noise is made over the seismic data recorded during all working periods. It is concluded that </span><span>t</span>he noise sources in the periods around 0.5 s are linked to the dynamic processes in the Perunika Glacier<span>.</span> Some relationship between the change in <span>the </span>noise power in the 0.2-0.6s period band and tidal cycles has been found.</p><p><span><strong>Acknowledgment:</strong></span><span> The presented study is supported by project: No 70.25-171/22.11.2019 “Study the activity of the Perunika glacier during year-round deployment” funded by the </span><span>National Center for Polar Studies, Bulgaria</span><span>.</span></p>


2021 ◽  
Author(s):  
Natalya Boginskaya ◽  
Dmitry Kostylev

Abstract With the outbreak of the COVID-19 pandemic, many seismologists all over the world have noted a sharp (up to 30-50%) decrease in the daily background seismic noise during the period from March to May, 2020 [Lecocqetal., 2020]. The authors studied the influence of the self-isolation regime introduced in the Russian Federation from March 30, 2020 [On the declaring ..., 2020] and, as a consequence, the restriction of the work of public institutions and the mobility of the population, on the quality of seismological observations at seismic stations in large cities of the Russian Far East for the period from March 23, 2020 to April 12, 2020. The work analyses the records of seismic noise by the seismic stations of Khabarovsk and Vladivostok located in busy parts of the cities and, accordingly, strongly influenced by anthropogenic impact, as well as it analyses the records of the Yuzhno-Sakhalinsk seismic station located in the relatively «calm» part of the city. Power spectra and temporal variations of microseismic noise levels for the listed above seismic stations were constructed based on the data of broadband seismometers records in the range of 1-20 Hz. The analysis of noise level variations with the data on the population mobility was carried out on the basis of self-isolation index by Yandex, which shows the level of town activity over a selected period. The main sources of the increased microseismic noise at seismic stations were identified.


Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2127-2144
Author(s):  
Mario Arroyo-Solórzano ◽  
Diego Castro-Rojas ◽  
Frédérick Massin ◽  
Lepolt Linkimer ◽  
Ivonne Arroyo ◽  
...  

Abstract. A noticeable decrease in seismic noise was registered worldwide during the lockdown measures implemented in 2020 to prevent the spread of COVID-19. In Central America, strong lockdown measures started during March of 2020. In this study, we used seismic stations from Costa Rica, Guatemala, El Salvador, and Nicaragua to study the effects of these measures on seismic records by characterizing temporal variations in the high-frequency band (4–14 Hz) via spectral and amplitude analyses. In addition, we studied the link between the reduction in seismic noise and the number of earthquake detections and felt reports in Costa Rica and Guatemala. We found that seismic stations near the capitals of Costa Rica, Guatemala, and El Salvador presented a decrease in their typical seismic noise levels, from 200 to 140, from 100 to 80, and from 120 to 80 nm, respectively. Our results showed that the largest reduction of ∼ 50 % in seismic noise was observed at seismic stations near main airports, busy roads, and densely populated cities. In Nicaragua, the seismic noise levels remained constant (∼ 40 nm), as no lockdown measures were applied. We suggest that the decrease in seismic noise levels may have increased earthquake detections and the number of felt reports of low-magnitude earthquakes. However, the variations observed in several seismic parameters before and after the lockdown are not significant enough to easily link our observations or separate them from other contributing factors. Our results imply that the study of seismic noise levels can be useful to verify compliance with lockdown measures and to explore their effects on earthquake detection and felt reports.


1999 ◽  
Vol 86 (4) ◽  
pp. 1337-1346 ◽  
Author(s):  
Stuart A. Binder-Macleod ◽  
David W. Russ

No comparison of the amount of low-frequency fatigue (LFF) produced by different activation frequencies exists, although frequencies ranging from 10 to 100 Hz have been used to induce LFF. The quadriceps femoris of 11 healthy subjects were tested in 5 separate sessions. In each session, the force-generating ability of the muscle was tested before and after fatigue and at 2, ∼13, and ∼38 min of recovery. Brief (6-pulse), constant-frequency trains of 9.1, 14.3, 33.3, and 100 Hz and a 6-pulse, variable-frequency train with a mean frequency of 14.3 Hz were delivered at 1 train/s to induce fatigue. Immediately postfatigue, there was a significant effect of fatiguing protocol frequency. Muscles exhibited greater LFF after stimulation with the 9.1-, 14.3-, and variable-frequency trains. These three trains also produced the greatest mean force-time integrals during the fatigue test. At 2, ∼13, and ∼38 min of recovery, however, the LFF produced was independent of the fatiguing protocol frequency. The findings are consistent with theories suggesting two independent mechanisms behind LFF and may help identify the optimal activation pattern when functional electrical stimulation is used.


1991 ◽  
Vol 1 (3) ◽  
pp. 223-239
Author(s):  
G. Cheron

This study was intended to test the adaptive plasticity of the vestibulo-ocular reflex before and after either a midsagittal or parasagittal incision in the brainstem. Eye movements were measured with the electromagnetic search coil technique during the vestibulo-ocular reflex (VORD) in the dark, the optokinetic reflex (OKN), and the visuo-vestibular adaptive training procedure. Two types of visual-vestibular combined stimulation were applied by means of low frequency stimuli (0.05 to 0.10 Hz). In order to increase or decrease the VORD gain, the optokinetic drum was oscillated either 180∘ out-of-phase or in-phase with the vestibular stimulus turntable. This “training” procedure was applied for 4 hours. Initial measurements of the VORD were normal with a mean gain value of 0.92 ± 0.08. After 4 hours of “training” with the out-of-phase condition (180∘), VORD gain reached mean values of 1.33 ± 0.11 (n = 6 cats). In the in-phase combination, the mean VORD gain decreased from 1.0 to 0.63 ± 0.02 (n = 2 cats). No significant change of VORD phase was found in any of the cats. Midsagittal or parasagittal pontomedullary brainstem incisions were performed in 4 cats. Recovery of the VOR was tested on the 2nd, 7th, and 30th day after operation. After the 30th day, recovery of the VORD gain stabilized at about 66% of the initial preoperative value. At this stage of the recovery, the optokinetic response (OKN) of the midsagittal-Iesioned cats was practically normal: in the parasagittal-Jesioned cats, the postoperative OKN responses were asymmetric. After stabilization of recovery, lesioned cats were trained with the same adaptation procedure. Although the direct effect of the visuo-vestibular combined stimulation during the training was still operative in all lesioned cats, the adaptive plasticity was completely abolished by the lesions. These results suggest that the commissural brainstem network may play a crucial role in the acquisition of the forced VOR adaptation.


1991 ◽  
Vol 81 (4) ◽  
pp. 1101-1114
Author(s):  
Jerry A. Carter ◽  
Noel Barstow ◽  
Paul W. Pomeroy ◽  
Eric P. Chael ◽  
Patrick J. Leahy

Abstract Evidence is presented supporting the view that high-frequency seismic noise decreases with increased depth. Noise amplitudes are higher near the free surface where surface-wave noise, cultural noise, and natural (wind-induced) noise predominate. Data were gathered at a hard-rock site in the northwestern Adirondack lowlands of northern New York. Between 15- and 40-Hz noise levels at this site are more than 10 dB less at 945-m depth than they are at the surface, and from 40 to 100 Hz the difference is more than 20 dB. In addition, time variability of the spectra is shown to be greater at the surface than at either 335- or 945-m depths. Part of the difference between the surface and subsurface noise variability may be related to wind-induced noise. Coherency measurements between orthogonal components of motion show high-frequency seismic noise is more highly organized at the surface than it is at depth. Coherency measurements between the same component of motion at different vertical offsets show a strong low-frequency coherence at least up to 945-m vertical offsets. As the vertical offset decreases, the frequency band of high coherence increases.


Author(s):  
Arundhati Goley ◽  
A. Mooventhan ◽  
NK. Manjunath

Abstract Background Hydrotherapeutic applications to the head and spine have shown to improve cardiovascular and autonomic functions. There is lack of study reporting the effect of either neutral spinal bath (NSB) or neutral spinal spray (NSS). Hence, the present study was conducted to evaluate and compare the effects of both NSB and NSS in healthy volunteers. Methods Thirty healthy subjects were recruited and randomized into either neutral spinal bath group (NSBG) or neutral spinal spray group (NSSG). A single session of NSB, NSS was given for 15 min to the NSBG and NSSG, respectively. Assessments were taken before and after the interventions. Results Results of this study showed a significant reduction in low-frequency (LF) to high-frequency (HF) (LF/HF) ratio of heart rate variability (HRV) spectrum in NSBG compared with NSSG (p=0.026). Within-group analysis of both NSBG and NSSG showed a significant increase in the mean of the intervals between adjacent QRS complexes or the instantaneous heart rate (HR) (RRI) (p=0.002; p=0.009, respectively), along with a significant reduction in HR (p=0.002; p=0.004, respectively). But, a significant reduction in systolic blood pressure (SBP) (p=0.037) and pulse pressure (PP) (p=0.017) was observed in NSSG, while a significant reduction in diastolic blood pressure (DBP) (p=0.008), mean arterial blood pressure (MAP) (p=0.008) and LF/HF ratio (p=0.041) was observed in NSBG. Conclusion Results of the study suggest that 15 min of both NSB and NSS might be effective in reducing HR and improving HRV. However, NSS is particularly effective in reducing SBP and PP, while NSB is particularly effective in reducing DBP and MAP along with improving sympathovagal balance in healthy volunteers.


Sign in / Sign up

Export Citation Format

Share Document