scholarly journals Iceberg calving from the Amery Ice Shelf, East Antarctica

2002 ◽  
Vol 34 ◽  
pp. 241-246 ◽  
Author(s):  
Helen A. Fricker ◽  
Neal W. Young ◽  
Ian Allison ◽  
Richard Coleman

AbstractWe investigate the iceberg-calving cycle of the Amery Ice Shelf (AIS), East Antarctica, using evidence acquired between 1936 and 2000. The most recent major iceberg-calving event occurred between late 1963 and early 1964, when a large berg totalling about 10 000 km2 in area broke from the ice front. The rate of forward advance of the ice front is presently 1300–1400ma–1. At this rate of advance, based on the present ice-front position from recent RADARSAT imagery, it would take 20–25 years to attain the 1963 (pre-calve) position, suggesting that the AIS calving cycle has a period of approximately 60–70 years. Two longitudinal (parallel-to-flow) rifts, approximately 25 km apart at the AIS front, are observed in satellite imagery acquired over the last 14+years. These rifts have formed at suture zones in the ice shelf, where neighbouring flow-bands have separated in association with transverse spreading. The rifts were 15 km (rift A) and 26 km (rift B) in length in September 2000, and will probably become the sides of a large tabular iceberg (25 km 625 km). Atransverse (perpendicular-to-flow) fracture, visible at the upstream end of rift A in 1996, had propagated 6 km towards rift B by September 2000; when it meets rift B the iceberg will calve. A satellite image acquired in 1962 shows an embayment of this size in the AIS front, hence we deduce that this calving pattern also occurred during the last calving cycle, and therefore that the calving behaviour of the AIS apparently follows a regular pattern.

2009 ◽  
Vol 55 (192) ◽  
pp. 717-728 ◽  
Author(s):  
Mike Craven ◽  
Ian Allison ◽  
Helen Amanda Fricker ◽  
Roland Warner

AbstractThe Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 ± 0.2 m a−1, at a reference density of 920 kg m−3 between borehole sites, and infer a similar average rate of 1.3 ± 0.2 m a−1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a−1 between the borehole sites; upstream the average closure rate is faster at 0.9 m a−1. We estimate an average porosity of the total marine ice layer of 14–20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.


2014 ◽  
Vol 8 (3) ◽  
pp. 1057-1068 ◽  
Author(s):  
Y. Gong ◽  
S. L. Cornford ◽  
A. J. Payne

Abstract. The interaction between the climate system and the large polar ice sheet regions is a key process in global environmental change. We carried out dynamic ice simulations of one of the largest drainage systems in East Antarctica: the Lambert Glacier–Amery Ice Shelf system, with an adaptive mesh ice sheet model. The ice sheet model is driven by surface accumulation and basal melt rates computed by the FESOM (Finite-Element Sea-Ice Ocean Model) ocean model and the RACMO2 (Regional Atmospheric Climate Model) and LMDZ4 (Laboratoire de Météorologie Dynamique Zoom) atmosphere models. The change of ice thickness and velocity in the ice shelf is mainly influenced by the basal melt distribution, but, although the ice shelf thins in most of the simulations, there is little grounding line retreat. We find that the Lambert Glacier grounding line can retreat as much as 40 km if there is sufficient thinning of the ice shelf south of Clemence Massif, but the ocean model does not provide sufficiently high melt rates in that region. Overall, the increased accumulation computed by the atmosphere models outweighs ice stream acceleration so that the net contribution to sea level rise is negative.


2018 ◽  
Author(s):  
Bertie W. J. Miles ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson

Abstract. Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea-level. Despite its importance, there have been very few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time-series of ice-front position change from 1947–2017 and ice velocity from 1973–2017. Cook Glacier has two distinct outlets (termed East and West) and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean-climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean-climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea-ice and mélange in the newly formed embayment appears to be important in stabilising the glacier front and enabling periodic advances. We also observe a short-lived increase in velocity of Cook East between 2006 and 2007 which we link to the drainage of subglacial Lake Cook. Taken together, these observations suggest that the velocity, and hence discharge, of Cook Glacier is highly sensitive to changes at its terminus but a more detailed process-based analysis of this potentially vulnerable region requires further oceanic and bathymetric data.


Polar Biology ◽  
2006 ◽  
Vol 30 (2) ◽  
pp. 143-153 ◽  
Author(s):  
D. Roberts ◽  
M. Craven ◽  
Minghong Cai ◽  
I. Allison ◽  
G. Nash

1986 ◽  
Vol 32 (112) ◽  
pp. 464-474 ◽  
Author(s):  
S. S. Jacobs ◽  
D. R. Macayeal ◽  
J. L. Ardai

AbstractThe seaward edge of the Ross Ice Shelf advanced northward at a minimum average velocity of 0.8 km a–1 between 1962 and 1985. That advance approximated velocities that have been obtained from glaciological data, indicating little recent wastage by iceberg calving. West of long. 178° E., the ice shelf has attained its most northerly position in the past 145 years, and has not experienced a major calving episode for at least 75 years. Since 1841 the ice-front position has advanced and retreated within a zone from about lat. 77° 10’S. (near long. 171° E.) to lat. 78° 40’ S. (near long. 164° W.). The central ice front is now farthest south but has the highest advance rate. Calving may occur at more frequent intervals in that sector, which also overlies the warmest ocean currents that flow into the sub-ice-shelf cavity. Available information on ice-shelf advance, thickness, spreading rate, and surface accumulation indicates a basal melting rate around 3 m a–1 near the ice front. These data and independent estimates imply that basal melting is nearly as large a factor as iceberg calving in maintaining the ice-shelf mass balance. In recent years, the Ross, Ronne, and Filchner Ice Shelves have contributed few icebergs to the Southern Ocean, while projections from a contemporaneous iceberg census are that circumpolar calving alone may exceed accumulation on the ice sheet. Large-scale ice-shelf calving may have preceded historical sightings of increased numbers of icebergs at sea.


2015 ◽  
Vol 120 (4) ◽  
pp. 3098-3112 ◽  
Author(s):  
Laura Herraiz-Borreguero ◽  
Richard Coleman ◽  
Ian Allison ◽  
Stephen R. Rintoul ◽  
Mike Craven ◽  
...  

2008 ◽  
Vol 54 (184) ◽  
pp. 17-27 ◽  
Author(s):  
Jeremy N. Bassis ◽  
Helen A. Fricker ◽  
Richard Coleman ◽  
Jean-Bernard Minster

AbstractFor three field seasons (2002/03, 2004/05, 2005/06) we have deployed a network of GPS receivers and seismometers around the tip of a propagating rift on the Amery Ice Shelf, East Antarctica. During these campaigns we detected seven bursts of episodic rift propagation. To determine whether these rift propagation events were triggered by short-term environmental forcings, we analyzed simultaneous ancillary data such as wind speeds, tidal amplitudes and sea-ice fraction (a proxy variable for ocean swell). We find that none of these environmental forcings, separately or together, correlated with rift propagation. This apparent insensitivity of ice-shelf rift propagation to short-term environmental forcings leads us to suggest that the rifting process is primarily driven by the internal glaciological stress. Our hypothesis is supported by order-of-magnitude calculations that the glaciological stress is the dominant term in the force balance. However, our calculations also indicate that as the ice shelf thins or the rift system matures and iceberg detachment becomes imminent, short-term stresses due to winds and ocean swell may become more important.


2008 ◽  
Vol 54 (188) ◽  
pp. 881-887 ◽  
Author(s):  
B.K. Galton-Fenzi ◽  
C. Maraldi ◽  
R. Coleman ◽  
J. Hunter

AbstractOcean circulation under ice shelves and associated rates of melting and freezing are strongly influenced by the shape of the sub-ice-shelf cavity. We have refined an existing method and used additional in situ measurements to estimate the cavity shape under the Amery Ice Shelf, East Antarctica. A finite-element hydrodynamic ocean-tide model was used to simulate the major tidal constituents for a range of different sub-Amery Ice Shelf cavity water-column thicknesses. The data are adjusted in the largely unsurveyed southern region of the ice-shelf cavity by comparing the complex error between simulated tides and in situ tides, derived from GPS observations. We show a significant improvement in the simulated tides, with a combined complex error of 1.8 cm, in comparison with past studies which show a complex error of ∼5.3 cm. Our bathymetry incorporates ice-draft data at the grounding line and seismic surveys, which have provided a considerable amount of new data. This technique has particular application when the water column beneath ice shelves is inaccessible and in situ GPS data are available.


Sign in / Sign up

Export Citation Format

Share Document