scholarly journals Velocity increases at Cook Glacier, East Antarctica linked to ice shelf loss and a subglacial flood event

2018 ◽  
Author(s):  
Bertie W. J. Miles ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson

Abstract. Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea-level. Despite its importance, there have been very few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time-series of ice-front position change from 1947–2017 and ice velocity from 1973–2017. Cook Glacier has two distinct outlets (termed East and West) and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean-climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean-climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea-ice and mélange in the newly formed embayment appears to be important in stabilising the glacier front and enabling periodic advances. We also observe a short-lived increase in velocity of Cook East between 2006 and 2007 which we link to the drainage of subglacial Lake Cook. Taken together, these observations suggest that the velocity, and hence discharge, of Cook Glacier is highly sensitive to changes at its terminus but a more detailed process-based analysis of this potentially vulnerable region requires further oceanic and bathymetric data.

2018 ◽  
Vol 12 (10) ◽  
pp. 3123-3136 ◽  
Author(s):  
Bertie W. J. Miles ◽  
Chris R. Stokes ◽  
Stewart S. R. Jamieson

Abstract. Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea level. Despite its importance, there have been very few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time series of ice front position change from 1947 to 2017 and ice velocity from 1973 to 2017. Cook Glacier has two distinct outlets (termed East and West), and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West Glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea ice and mélange in the newly formed embayment appears to be important in stabilizing the glacier front and enabling periodic advances. We also show that the last calving event at the larger Cook East Ice Shelf resulted in the retreat of its ice front into a dynamically important portion of the ice shelf and observe a short-lived increase in velocity of Cook East between 2006 and 2007, which we link to the drainage of subglacial Lake Cook. Taken together, these observations suggest that the velocity, and hence discharge, of Cook Glacier is highly sensitive to changes at its terminus, but a more detailed process-based analysis of this potentially vulnerable region requires further oceanic and bathymetric data.


2000 ◽  
Vol 46 (153) ◽  
pp. 197-205 ◽  
Author(s):  
Christoph Mayer ◽  
Martin J. Siegert

AbstractA numerical model of the ice-sheet/ice-shelf transition was used to investigate ice-sheet dynamics across the large subglacial lake beneath Vostok station, central East Antarctica. European Remote-sensing Satellite (ERS-1) altimetry of the ice surface and 60 MHz radio-echo sounding (RES) of the ice-sheet base and internal ice-sheet layering were used to develop a conceptual flowline across the ice sheet, which the model used as input. The model calculates horizontal and vertical velocities and stresses, from which particle flow paths can be obtained, and the ice-sheet temperature distribution. An inverse approach to modelling was adopted, where particle flow paths were forced to match those identified from internal RES layering. Results show that ice dynamics across the inflow grounding line are similar to an ice-sheet/ice-shelf transition. Model particle flow paths match internal RES layering when ice is (a) taken away from the ice base across the first 2 km of the flowline over the lake and (b) added to the base across the remainder of the lake. We contend that the process causing this transfer of ice is likely to be melting of ice and freezing of water at the ice–water interface. Other explanations, such as enhanced rates of accumulation over the grounding line, or three-dimensional convergent/divergent flow of ice are inconsistent with available measurements. Such melting and refreezing would be responsible for circulation and mixing of at least the surface layers of the lake water. Our model suggests that several tens of metres of refrozen “basal ice” would accrete from lake water to the ice sheet before the ice regrounds.


2021 ◽  
Author(s):  
Guillian Van Achter ◽  
Thierry Fichefet ◽  
Hugues Goosse ◽  
Charles Pelletier ◽  
Jean Sterlin ◽  
...  

<p>The Totten Glacier in East Antarctica is of major climate interest because of the large fluctuation of its grounding line and of its potential vulnerability to climate change. The ocean above the continental shelf in front of the Totten ice shelf exhibits large extents of landfast sea ice with low interannual variability. Landfast sea ice is mostly not or sole crudely represented in current climate models. These models are potentially omitting or misrepresenting important effects related to this type of sea ice, such as its influence on coastal polynya locations. Yet, the impact of the landfast sea<br>ice on the ocean – ice shelf interactions is poorly understood. Using a series of high-resolution, regional NEMO-LIM-based experiments including an<br>explicit treatment of ocean – ice shelf interactions over the years 2001-2010, we simulate a realistic landfast sea ice extent in the area of Totten Glacier<br>through a combination of a sea ice tensile strength parameterisation and a grounded iceberg representation. We show that the presence of landfast sea<br>ice impacts seriously both the location of coastal polynyas and the ocean mixed layer depth along the coast, in addition to favouring the intrusion of<br>mixed Circumpolar Deep Water into the ice shelf cavities. Depending on the local bathymetry and the landfast sea ice distribution, landfast sea ice affects ice shelf cavities in different ways, either by increasing the ice melt (+28% for the Moscow University ice shelf) or by reducing its seasonal cycle<br>(+10% in March-May for the Totten ice shelf). This highlights the importance of including an accurate landfast sea ice representation in regional and<br>eventually global climate models</p>


2002 ◽  
Vol 34 ◽  
pp. 241-246 ◽  
Author(s):  
Helen A. Fricker ◽  
Neal W. Young ◽  
Ian Allison ◽  
Richard Coleman

AbstractWe investigate the iceberg-calving cycle of the Amery Ice Shelf (AIS), East Antarctica, using evidence acquired between 1936 and 2000. The most recent major iceberg-calving event occurred between late 1963 and early 1964, when a large berg totalling about 10 000 km2 in area broke from the ice front. The rate of forward advance of the ice front is presently 1300–1400ma–1. At this rate of advance, based on the present ice-front position from recent RADARSAT imagery, it would take 20–25 years to attain the 1963 (pre-calve) position, suggesting that the AIS calving cycle has a period of approximately 60–70 years. Two longitudinal (parallel-to-flow) rifts, approximately 25 km apart at the AIS front, are observed in satellite imagery acquired over the last 14+years. These rifts have formed at suture zones in the ice shelf, where neighbouring flow-bands have separated in association with transverse spreading. The rifts were 15 km (rift A) and 26 km (rift B) in length in September 2000, and will probably become the sides of a large tabular iceberg (25 km 625 km). Atransverse (perpendicular-to-flow) fracture, visible at the upstream end of rift A in 1996, had propagated 6 km towards rift B by September 2000; when it meets rift B the iceberg will calve. A satellite image acquired in 1962 shows an embayment of this size in the AIS front, hence we deduce that this calving pattern also occurred during the last calving cycle, and therefore that the calving behaviour of the AIS apparently follows a regular pattern.


2021 ◽  
pp. 1-13
Author(s):  
James R. Jordan ◽  
G. Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris R. Stokes ◽  
Bertie W. J. Miles ◽  
...  

Abstract The Wilkes Subglacial Basin in East Antarctica contains ice equivalent to 3–4 m of global mean sea level rise and is primarily drained by Cook Glacier. Of concern is that recent observations (since the 1970s) show an acceleration in ice speed over the grounding line of both the Eastern and Western portions of Cook Glacier. Here, we use a numerical ice-flow model (Úa) to simulate the instantaneous effects of observed changes at the terminus of Cook Glacier in order to understand the link between these changes and recently observed ice acceleration. Simulations suggest that the acceleration of Cook West was caused by a retreat in calving-front position in the 1970s, potentially enhanced by grounding-line retreat, while acceleration of Cook East was likely caused by ice-shelf thinning and grounding-line retreat in the mid-1990s. Moreover, we show that the instantaneous ice discharge at Cook East would increase by up to 85% if the whole ice shelf is removed and it ungrounds from a pinning point; and that the discharge at Cook West could increase by ~300% if its grounding line retreated by 10 km.


2018 ◽  
Author(s):  
Chad A. Greene ◽  
Duncan A. Young ◽  
David E. Gwyther ◽  
Benjamin K. Galton-Fenzi ◽  
Donald D. Blankenship

Abstract. Previous studies of Totten Ice Shelf have employed surface velocity measurements to estimate its mass balance and understand its sensitivities to interannual changes in climate forcing. However, displacement measurements acquired over timescales of days to weeks may not accurately characterize long-term flow rates where ice velocity fluctuates with the seasons. Quantifying annual mass budgets or analyzing interannual changes in ice velocity requires knowing when and where observations of glacier velocity could be aliased by subannual variability. Here, we analyze 16 years of velocity data for Totten Ice Shelf, which we generate at subannual resolution by applying feature tracking algorithms to several hundred satellite image pairs. We identify a seasonal cycle characterized by a spring to autumn speedup of more than 100 m yr−1 close to the ice front. The amplitude of the seasonal cycle diminishes with distance from the open ocean, suggesting the presence of a resistive backstress at the ice front that is strongest in winter. Springtime acceleration precedes summer surface melt and is not attributable to thinning from basal melt. We attribute the onset of ice shelf acceleration each spring to the loss of buttressing from the breakup of seasonal landfast sea ice.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Masahiro Minowa ◽  
Shin Sugiyama ◽  
Masato Ito ◽  
Shiori Yamane ◽  
Shigeru Aoki

AbstractBasal melting of ice shelves is considered to be the principal driver of recent ice mass loss in Antarctica. Nevertheless, in-situ oceanic data covering the extensive areas of a subshelf cavity are sparse. Here we show comprehensive structures of temperature, salinity and current measured in January 2018 through four boreholes drilled at a ~3-km-long ice shelf of Langhovde Glacier in East Antarctica. The measurements were performed in 302–12 m-thick ocean cavity beneath 234–412 m-thick ice shelf. The data indicate that Modified Warm Deep Water is transported into the grounding zone beneath a stratified buoyant plume. Water at the ice-ocean interface was warmer than the in-situ freezing point by 0.65–0.95°C, leading to a mean basal melt rate estimate of 1.42 m a−1. Our measurements indicate the existence of a density-driven water circulation in the cavity beneath the ice shelf of Langhovde Glacier, similar to that proposed for warm-ocean cavities of larger Antarctic ice shelves.


2015 ◽  
Vol 54 (7) ◽  
pp. 1393-1412 ◽  
Author(s):  
Dale T. Andersen ◽  
Christopher P. McKay ◽  
Victor Lagun

AbstractIn November 2008 an automated meteorological station was established at Lake Untersee in East Antarctica, producing a 5-yr data record of meteorological conditions at the lake. This dataset includes five austral summer seasons composed of December, January, and February (DJF). The average solar flux at Lake Untersee for the four years with complete solar flux data is 99.2 ± 0.6 W m−2. The mean annual temperature at Lake Untersee was determined to be −10.6° ± 0.6°C. The annual degree-days above freezing for the five years were 9.7, 37.7, 22.4, 7.0, and 48.8, respectively, with summer (DJF) accounting for virtually all of this. For these five summers the average DJF temperatures were −3.5°, −1.9°, −2.2°, −2.6°, and −2.5°C. The maximum (minimum) temperatures were +5.3°, +7.6°, +5.7°, +4.4°, and +9.0°C (−13.8°, −12.8°, −12.9°, −13.5°, and −12.1°C). The average of the wind speed recorded was 5.4 m s−1, the maximum was 35.7 m s−1, and the average daily maximum was 15 m s−1. The wind speed was higher in the winter, averaging 6.4 m s−1. Summer winds averaged 4.7 m s−1. The dominant wind direction for strong winds is from the south for all seasons, with a secondary source of strong winds in the summer from the east-northeast. Relative humidity averages 37%; however, high values will occur with an average period of ~10 days, providing a strong indicator of the quasi-periodic passage of storms across the site. Low summer temperatures and high wind speeds create conditions at the surface of the lake ice resulting in sublimation rather than melting as the main mass-loss process.


2013 ◽  
Vol 59 (214) ◽  
pp. 315-326 ◽  
Author(s):  
A. Richter ◽  
D.V. Fedorov ◽  
M. Fritsche ◽  
S.V. Popov ◽  
V.Ya. Lipenkov ◽  
...  

AbstractRepeated Global Navigation Satellite Systems (GNSS) observations were carried out at 50 surface markers in the Vostok Subglacial Lake (East Antarctica) region between 2001 and 2011. The horizontal ice flow velocity vectors were derived with accuracies of 1 cm a−1 and 0.5°, representing the first reliable information on ice flow kinematics in the northern part of the lake. Within the lake area, ice flow velocities do not exceed 2 m a−1. The ice flow azimuth is southeast in the southern part of the lake and turns gradually to east-northeast in the northern part. In the northern part, as the ice flow enters the lake at the western shore, the velocity decreases towards the central lake axis, then increases slightly past the central axis. In the southern part, a continued acceleration is observed from the central lake axis across the downstream grounding line. Based on the observed flow velocity vectors and ice thickness data, mean surface accumulation rates are inferred for four surface segments between Ridge B and Vostok Subglacial Lake and show a steady increase towards the north.


2009 ◽  
Vol 55 (192) ◽  
pp. 717-728 ◽  
Author(s):  
Mike Craven ◽  
Ian Allison ◽  
Helen Amanda Fricker ◽  
Roland Warner

AbstractThe Amery Ice Shelf, East Antarctica, undergoes high basal melt rates near the southern limit of its grounding line where 80% of the ice melts within 240 km of becoming afloat. A considerable portion of this later refreezes downstream as marine ice. This produces a marine ice layer up to 200 m thick in the northwest sector of the ice shelf concentrated in a pair of longitudinal bands that extend some 200 km all the way to the calving front. We drilled through the eastern marine ice band at two locations 70 km apart on the same flowline. We determine an average accretion rate of marine ice of 1.1 ± 0.2 m a−1, at a reference density of 920 kg m−3 between borehole sites, and infer a similar average rate of 1.3 ± 0.2 m a−1 upstream. The deeper marine ice was permeable enough that a hydraulic connection was made whilst the drill was still 70–100 m above the ice-shelf base. Below this marine close-off depth, borehole video imagery showed permeable ice with water-filled cavities and individual ice platelets fused together, while the upper marine ice was impermeable with small brine-cell inclusions. We infer that the uppermost portion of the permeable ice becomes impermeable with the passage of time and as more marine ice is accreted on the base of the shelf. We estimate an average closure rate of 0.3 m a−1 between the borehole sites; upstream the average closure rate is faster at 0.9 m a−1. We estimate an average porosity of the total marine ice layer of 14–20%, such that the deeper ice must have even higher values. High permeability implies that sea water can move relatively freely through the material, and we propose that where such marine ice exists this renders deep parts of the ice shelf particularly vulnerable to changes in ocean properties.


Sign in / Sign up

Export Citation Format

Share Document