scholarly journals Estimation of water content in a temperate glacier from radar and seismic sounding data

2003 ◽  
Vol 37 ◽  
pp. 317-324 ◽  
Author(s):  
Beatriz Benjumea ◽  
Yury Ya. Macheret ◽  
Francisco J. Navarro ◽  
Teresa Teixidό

AbstractRadio-wave velocity measurements in temperate and polythermal glaciers, combined with dielectric mixture formulae by Looyenga or Paren, have been used during the last decade to estimate the water content in temperate ice. We have used a similar mixture formula by Riznichenko, but based on elastic properties of the material, to estimate the water content from seismic velocity data. To compare the suitability of the two methods, we have used seismic and radar data from a temperate glacier on an Antarctic island. The estimated water contents are within 0.4–2.3% (average 1.2 ±0.6%) when radio-wave velocities are used, and within 0.9–3.2% (average 2.2±0.9%) when seismic velocities are used. These results are similar to those directly measured from ice cores and to those estimated from radar data on other temperate glaciers. The water-content estimates from seismic data are higher than those from radar data, which we attribute to the different behaviour of seismic and radar velocities as functions of density. Near-surface conditions (ice–firn conditions, presence of crevasses, etc.) have a strong influence on the propagation of elastic and electromagnetic waves, and thus on the accuracy of the velocity determinations and water-content estimates, and so should not be disregarded.

2021 ◽  
Vol 13 (14) ◽  
pp. 2684
Author(s):  
Eldert Fokker ◽  
Elmer Ruigrok ◽  
Rhys Hawkins ◽  
Jeannot Trampert

Previous studies examining the relationship between the groundwater table and seismic velocities have been guided by empirical relationships only. Here, we develop a physics-based model relating fluctuations in groundwater table and pore pressure with seismic velocity variations through changes in effective stress. This model justifies the use of seismic velocity variations for monitoring of the pore pressure. Using a subset of the Groningen seismic network, near-surface velocity changes are estimated over a four-year period, using passive image interferometry. The same velocity changes are predicted by applying the newly derived theory to pressure-head recordings. It is demonstrated that the theory provides a close match of the observed seismic velocity changes.


2011 ◽  
Vol 8 (3) ◽  
pp. 585-595 ◽  
Author(s):  
S. Wendel ◽  
T. Moore ◽  
J. Bubier ◽  
C. Blodau

Abstract. Ombrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, p < 0.05) owing to increased shading, whereas they increased in deeper peat soil (t-test, p < 0.05), probably by enhanced thermal conductivity. These effects were confirmed by RMANOVA, which also suggested an influence of volumetric water contents as co-variable on soil temperature and vice versa (p < 0.05). Averaged over all fertilized treatments, the mean soil temperatures at 5 cm depth decreased by 1.3 °C and by 4.7 °C (standard deviation 0.9 °C) at noon. Water content was most strongly affected by within-plot spatial heterogeneity but also responded to both N and PK load according to RMANOVA (p < 0.05). Overall, water content and CO2 concentrations in the near-surface peat (t-test, p < 0.05) were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes.


1998 ◽  
Vol 41 (4) ◽  
Author(s):  
G. Iannaccone ◽  
L. Improta ◽  
P. Capuano ◽  
A. Zollo ◽  
G. Biella ◽  
...  

This paper describes the results of a seismic refraction profile conducted in October 1992 in the Sannio region, Southern Italy, to obtain a detailed P-wave velocity model of the upper crust. The profile, 75 km long, extended parallel to the Apenninic chain in a region frequently damaged in historical time by strong earthquakes. Six shots were fired at five sites and recorded by a number of seismic stations ranging from 41 to 71 with a spacing of 1-2 km along the recording line. We used a two-dimensional raytracing technique to model travel times and amplitudes of first and second arrivals. The obtained P-wave velocity model has a shallow structure with strong lateral variations in the southern portion of the profile. Near surface sediments of the Tertiary age are characterized by seismic velocities in the 3.0-4.1 km/s range. In the northern part of the profile these deposits overlie a layer with a velocity of 4.8 km/s that has been interpreted as a Mesozoic sedimentary succession. A high velocity body, corresponding to the limestones of the Western Carbonate Platform with a velocity of 6 km/s, characterizes the southernmost part of the profile at shallow depths. At a depth of about 4 km the model becomes laterally homogeneous showing a continuous layer with a thickness in the 3-4 km range and a velocity of 6 km/s corresponding to the Meso-Cenozoic limestone succession of the Apulia Carbonate Platform. This platform appears to be layered, as indicated by an increase in seismic velocity from 6 to 6.7 km/s at depths in the 6-8 km range, that has been interpreted as a lithological transition from limestones to Triassic dolomites and anhydrites of the Burano formation. A lower P-wave velocity of about 5.0-5.5 km/s is hypothesized at the bottom of the Apulia Platform at depths ranging from 10 km down to 12.5 km; these low velocities could be related to Permo-Triassic siliciclastic deposits of the Verrucano sequence drilled at the bottom of the Apulia Platform in the Apulia Foreland.


2010 ◽  
Vol 7 (4) ◽  
pp. 6589-6616
Author(s):  
S. Wendel ◽  
T. Moore ◽  
J. Bubier ◽  
C. Blodau

Abstract. Ombrotrophic peatlands depend on airborne nitrogen (N), whose deposition has increased in the past and lead to disappearance of mosses and increased shrub biomass in fertilization experiments. The response of soil water content, temperature, and carbon gas concentrations to increased nutrient loading is poorly known and we thus determined these data at the long-term N fertilization site Mer Bleue bog, Ontario, during a two month period in summer. Soil temperatures decreased with NPK addition in shallow peat soil primarily during the daytime (t-test, p<0.05) owing to increased shading, whereas they increased in deeper peat soil (t-test, p<0.05), probably by enhanced thermal conductivity. RMANOVA suggested interactions between N and PK addition in particular soil layers and strong interactions between soil temperatures and volumetric water contents (p<0.05). Averaged over all fertilized treatments, the mean soil temperatures at 5 cm depth decreased by 1.3 °C and by 4.7 °C (standard deviation 0.9 °C) at noon. Water content was most strongly affected by within-plot spatial heterogeneity but also responded to both N and PK load according to RMANOVA (p<0.05). Overall, water content and CO2 concentrations in the near-surface peat (t-test, p<0.05) were lower with increasing N load, suggesting more rapid soil gas exchange. The results thus suggest that changes in bog ecosystem structure with N deposition have significant ramifications for physical parameters that in turn control biogeochemical processes.


2021 ◽  
Author(s):  
Olaf Eisen ◽  
Steven Franke ◽  
Daniela Jansen ◽  
John Paden ◽  
Reinhard Drews ◽  
...  

&lt;p&gt;Crystal anisotropy of ice causes slight birefringence for electromagnetic waves. At the same time, the mechanical anisotropy amounts to several orders of magnitude, thus making fabric properties highly-relevant for internal deformation. To date, bulk anisotropy of glaciers and ice sheets can be determined by geophysical methods, such as polarimetric radar, or direct sampling from ice cores. A shortcoming has been so far that changes of bulk anisotropy could mainly be inferred at single point observations, but less so as continuous profiles. Here, we exploit the effect of birefringence caused by bulk anisotropy in co-polarized airborne radar data to determine the horizontal anisotropy across the North-East Greenland Ice Stream. We base our analysis on the fact that birefringence causes a second-order effect on radar amplitudes, which leads to a beat frequency in the low and medium frequency range (O(100 kHz)), which is proportional to the horizontal anisotropy. Complementing our radar analysis with direct fabric and dielectric property observations we can constrain the range of all three fabric eigenvalues as a function of space across and along the ice stream. Finally, we assess the effect of the inferred fabric distribution on the overall ice rheology in the context of ice stream dynamics. Our overall approach has the advantage that it can be applied to co-polarized radar systems, as commonly used in profiling surveys, and does not require dedicated cross-polarized radar set-up. This provides the opportunity to revisit older data, especially from Greenland and Antarctica, to map fabric anisotropy in ice-dynamically interesting regions.&lt;/p&gt;


Author(s):  
Chloé Gradon ◽  
Florent Brenguier ◽  
Johannes Stammeijer ◽  
Aurélien Mordret ◽  
Kees Hindriks ◽  
...  

ABSTRACT Seismic velocities in the shallow crust down to a few kilometers depth show a remarkable sensitivity to stress perturbations due to the presence of compliant pores, cracks, fractures, and faults. Monitoring temporal changes of seismic velocities can thus provide key insights on dynamic processes affecting the shallow crust such as those related to the atmosphere (rainfall, barometric pressure, and temperature) and those with deeper tectonic and volcanic origins. In this work, we investigate the specific response of the near surface down to 300 m depth to atmospheric pressure variations. We conduct a four month passive seismic monitoring experiment in the desert of Oman using continuous noise recorded at geophones located within five wells. The results show a clear, direct correlation between seismic velocities and barometric pressure variations for monthly transients. At a longer, seasonal temporal scale, seismic velocities are stable, whereas atmospheric pressure shows a clear positive trend. We use the undrained coupled poroelastic theory to model these observations and find that the lack of seasonal velocity changes can be partly explained by the atmospheric pressure that diffuses into the pores with a strong hydraulic diffusivity likely higher than 100  m2/s consistent with the local geology referring to carbonates. Finally, the comparison between the modeled and observed velocity changes leads to estimate a velocity–stress sensitivity on the order of 6.3×10−7  Pa−1 which is consistent with previous studies. Using this result for calibration, we find that a sudden step-change drop of velocity of 0.015% occurring in the beginning of October 2019 and corresponding to a stress perturbation likely larger than 240 Pa affected the entire studied area. This small change could be related to a perturbation at greater depth associated with variations in the production rates within the underlying reservoir.


Author(s):  
Odin Marc ◽  
Christoph Sens-Schönfelder ◽  
Luc Illien ◽  
Patrick Meunier ◽  
Manuel Hobiger ◽  
...  

ABSTRACT In mountainous terrain, large earthquakes often cause widespread coseismic landsliding as well as hydrological and hydrogeological disturbances. A subsequent transient phase with high landslide rates has also been reported for several earthquakes. Separately, subsurface seismic velocities are frequently observed to drop coseismically and subsequently recover. Consistent with various laboratory work, we hypothesize that the seismic-velocity changes track coseismic damage and progressive recovery of landscape substrate, which modulate landslide hazard and hydrogeological processes, on timescales of months to years. To test this, we analyze the near-surface seismic-velocity variations, obtained with single-station high-frequency (0.5–4 Hz) passive image interferometry, in the epicentral zones of four shallow earthquakes, for which constraints on landslide susceptibility through time exist. In the case of the 1999 Chi-Chi earthquake, detailed landslide mapping allows us to accurately constrain an exponential recovery of landslide susceptibility with a relaxation timescale of about 1 yr, similar to the pattern of recovery of seismic velocities. The 2004 Niigata, 2008 Iwate, and 2015 Gorkha earthquakes have less-resolved constraints on landsliding, but, assuming an exponential recovery, we also find matching relaxation timescales, from ∼0.1 to ∼0.6  yr, for the landslide and seismic recoveries. These observations support our hypothesis and suggest that systematic monitoring of seismic velocities after large earthquakes may help constrain and manage the evolution of landslide hazard in epicentral areas. To achieve this goal, we end by discussing several ways to improve the link between seismic velocity and landscape mechanical properties, specifically by better constraining time-dependent near-surface strength and hydrogeological changes. Hillslopes displaying coseismic surface fissuring and displacement may be an important target for future geotechnical analysis and coupled to passive geophysical investigations.


2018 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the greatest challenges in glaciology, with respect to sea level predictions, is the ability to gain information on bulk ice anisotropy in ice sheets and glaciers, which is urgently needed to improve our understanding of ice-sheet dynamics. Therefore, we investigate the effect of crystal anisotropy on seismic velocities in a glacier. We revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c-axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an Alpine (KCC) and a polar (EDML) ice core. The results allow a quantitative evaluation of the earlier approximative eigenvalue framework. Additionally, our findings highlight the variation in seismic velocity as a function of the horizontal azimuth of the seismic plane, which can be significant in case of non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting. For the first time, we assess the change in seismic anisotropy that can be expected on a short spatial scale in a glacier due to a strong variability in crystal-orientation fabric. Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Author(s):  
Johannes Albert ◽  
Maximilian Schärf ◽  
Frieder Enzmann ◽  
Martin Waltl ◽  
Frank Sirocko

AbstractThis paper presents radon flux profiles from four regions in Schleswig–Holstein (Northern Germany). Three of these regions are located over deep-rooted tectonic faults or salt diapirs and one is in an area without any tectonic or halokinetic activity, but with steep topography. Contrary to recently published studies on spatial patterns of soil radon gas concentration we measured flux of radon from soil into the atmosphere. All radon devices of each profile were deployed simultaneously to avoid inconsistencies due to strong diurnal variations of radon exhalation. To compare data from different seasons, values had to be normalized. Observed radon flux patterns are apparently related to the mineralogical composition of the Quaternary strata (particularly to the abundance of reddish granite and porphyry), and its grain size (with a flux maximum in well-sorted sand/silt). Minimum radon flux occurs above non-permeable, clay-rich soil layers. Small amounts of water content in the pore space increase radon flux, whereas excessive water content lessens it. Peak flux values, however, are observed over a deep-rooted fault system on the eastern side of Lake Plön, i.e., at the boundary of the Eastholstein Platform and the Eastholstein Trough. Furthermore, high radon flux values are observed in two regions associated with salt diapirism and near-surface halokinetic faults. These regions show frequent local radon flux maxima, which indicate that the uppermost strata above salt diapirs are very inhomogeneous. Deep-rooted increased permeability (effective radon flux depth) or just the boundaries between permeable and impermeable strata appear to concentrate radon flux. In summary, our radon flux profiles are in accordance with the published evidence of low radon concentrations in the “normal” soils of Schleswig–Holstein. However, very high values of radon flux are likely to occur at distinct locations near salt diapirism at depth, boundaries between permeable and impermeable strata, and finally at the tectonically active flanks of the North German Basin.


Sign in / Sign up

Export Citation Format

Share Document