scholarly journals Cross-borehole resistivity tomography of Arctic and Antarctic sea ice

2011 ◽  
Vol 52 (57) ◽  
pp. 161-168 ◽  
Author(s):  
Keleigh Jones ◽  
Malcolm Ingham ◽  
Daniel Pringle ◽  
Hajo Eicken

AbstractAs an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the internal structure of sea ice are difficult to obtain without disturbing its natural state. We have recently developed an application of cross-borehole d.c. resistivity tomography to make in situ measurements that resolve the anisotropic resistivity structure of first-year sea ice. We present results from measurements made in 2008 off Barrow, Alaska, and in 2009 off Ross Island, Antarctica. the sea ice in these two regions forms in different environments: at Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements carried out in association with temperature and salinity data collected simultaneously allows both observation of the temporal evolution of the ice structure and, in the case of the Antarctic measurements, the identification of different ice types.

2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2015 ◽  
Vol 15 (23) ◽  
pp. 13339-13364 ◽  
Author(s):  
R. S. Humphries ◽  
R. Schofield ◽  
M. D. Keywood ◽  
J. Ward ◽  
J. R. Pierce ◽  
...  

Abstract. Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM) were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.


2020 ◽  
Author(s):  
Qian Shi ◽  
Qinghua Yang ◽  
Longjiang Mu ◽  
Jinfei Wang ◽  
François Massonnet ◽  
...  

Abstract. Ocean-sea ice coupled models constrained by varied observations provide different ice thickness estimates in the Antarctic. We evaluate contemporary monthly ice thickness from four reanalyses in the Weddell Sea, the German contribution of the Estimating the Circulation and Climate of the Ocean project, Version 2 (GECCO2), the Southern Ocean State Estimate (SOSE), the Nucleus for European Modelling of the Ocean (NEMO) based ocean-ice model (called NEMO-EnKF), and the Global Ice-Ocean Modeling and Assimilation System (GIOMAS), and with reference observations from ICESat-1, Envisat, upward looking sonars and visual ship-based sea-ice observations. Compared with ICESat-1 altimetry and in situ observations, all reanalyses underestimate ice thickness near the coast of the western Weddell Sea, even though ICESat-1 and visual observations may be biased low. GECCO2 and NEMO-EnKF can well reproduce the seasonal variation of first-year ice thickness in the eastern Weddell Sea. In contrast, GIOMAS ice thickness performs best in the central Weddell Sea, while SOSE ice thickness agrees most with the observations in the southern coast of the Weddell Sea. In addition, only NEMO-EnKF can reproduce the seasonal spatial evolution of ice thickness distribution well, characterized by the thick ice shifting from the southwestern and western Weddell Sea in summer to the western and northwestern Weddell Sea in spring. We infer that the thick ice distribution is correlated with its better simulation of northward ice motion in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis for understanding the recent variability of sea-ice volume in the Antarctic.


1993 ◽  
Vol 39 (133) ◽  
pp. 609-618 ◽  
Author(s):  
J. A. Richter Menge ◽  
K. F. Jones

AbstractWe present the results of tests done to determine the tensile behavior of first-year columnar sea ice over a range of temperatures from −20° to −3°C and strain rates of 10−5and 10−3s−1. The temperature of a test specimen was dictated by its in-situ location within the sea-ice sheet; samples located near the top of the sea-ice sheet were tested at the lower temperatures. A tensile load was applied along the cylindrical axes of the test specimens, which were perpendicular to the growth direction of the ice. Results showed that the maximum stress reached during a test was most strongly influenced by temperature, while the failure strain and the modulus were principally affected by the loading rate. A model relating the tensile strength of the ice to its porosity based on temperature-dependent variations in the brine-pocket geometry is evaluated.


2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2021 ◽  
Author(s):  
◽  
Keleigh Ann Jones

<p>As an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the microstructure of sea ice are difficult to obtain without disturbing its natural state. The brine fraction of sea ice is orders of magnitude more conductive than the solid ice, thus direct current resistivity techniques should yield information on sea ice microstructure. Due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first-year sea ice is anisotropic, complicating interpretation of surface resistivity soundings. However, it can be shown that in a bounded anisotropic medium the resistivity structure may be resolved through in situ cross-borehole measurements. Measurement between borehole pairs, each containing one current and one potential electrode, allows the determination of the horizontal component of the anisotropic bulk resistivity (PH). Using three to four electrodes positioned at approximately the same depth in separate boreholes, provides an under-estimation of the geometric mean resistivity (Pm), and numerical modelling is required to retrieve an estimate of the true Pm. Combining these resistivities allows calculation of the vertical component of the bulk resistivity (PV). This thesis looks at results from measurements made in first year sea ice in April – June 2008 off Barrow, Alaska and in November 2009 off Ross Island, Antarctica. At Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements, aided by temperature and salinity data, shows that this measurement technique can be used to observe evolution of the ice structure, and distinguish different ice types. Basic two phase structures provide a simple picture of the brine microstructure and how it changes with depth and time. These models indicate the need for vertical connectivity of the brine inclusions even in cool ice, and that PH seems to be mostly due to connections along grain boundaries.</p>


2021 ◽  
Author(s):  
◽  
Keleigh Ann Jones

<p>As an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the microstructure of sea ice are difficult to obtain without disturbing its natural state. The brine fraction of sea ice is orders of magnitude more conductive than the solid ice, thus direct current resistivity techniques should yield information on sea ice microstructure. Due to the preferential vertical alignment of brine inclusions, the bulk resistivity of first-year sea ice is anisotropic, complicating interpretation of surface resistivity soundings. However, it can be shown that in a bounded anisotropic medium the resistivity structure may be resolved through in situ cross-borehole measurements. Measurement between borehole pairs, each containing one current and one potential electrode, allows the determination of the horizontal component of the anisotropic bulk resistivity (PH). Using three to four electrodes positioned at approximately the same depth in separate boreholes, provides an under-estimation of the geometric mean resistivity (Pm), and numerical modelling is required to retrieve an estimate of the true Pm. Combining these resistivities allows calculation of the vertical component of the bulk resistivity (PV). This thesis looks at results from measurements made in first year sea ice in April – June 2008 off Barrow, Alaska and in November 2009 off Ross Island, Antarctica. At Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements, aided by temperature and salinity data, shows that this measurement technique can be used to observe evolution of the ice structure, and distinguish different ice types. Basic two phase structures provide a simple picture of the brine microstructure and how it changes with depth and time. These models indicate the need for vertical connectivity of the brine inclusions even in cool ice, and that PH seems to be mostly due to connections along grain boundaries.</p>


2015 ◽  
Vol 15 (14) ◽  
pp. 19477-19536 ◽  
Author(s):  
R. S. Humphries ◽  
R. Schofield ◽  
M. Keywood ◽  
J. Ward ◽  
J. R. Pierce ◽  
...  

Abstract. Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on-board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air-mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3) reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with Total Gaseous Mercury (TGM) were found that, together with other data, suggest a mercury driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (~ 1.5 ng m−3 and &amp;geq; 600 W m−2, respectively), such as those observed in the Antarctic sea ice boundary layer in this study or in the global free-troposphere, particularly in the Northern Hemisphere.


2015 ◽  
Vol 56 (69) ◽  
pp. 415-424 ◽  
Author(s):  
Alison L. Kohout ◽  
Bill Penrose ◽  
Scott Penrose ◽  
Michael J.M. Williams

AbstractA series of wave instruments was deployed on first-year Antarctic sea ice during SIPEX (Sea Ice Physics and Ecosystem Experiment) II. Here we describe the hardware and software design of these instruments and give an overview of the returned dataset. Each instrument consisted of a high-resolution accelerometer coupled with a tri-axis inertial measurement unit, which was located using GPS. The significant wave heights measured near the ice edge were predominately between 1 and 2 m. During the 6 weeks of data capture, several large wave events were measured. We report here a selection of events, highlighting the complexities associated with measuring wave decay at individual frequencies.


Sign in / Sign up

Export Citation Format

Share Document