scholarly journals A device for measuring wave-induced motion of ice floes in the Antarctic marginal ice zone

2015 ◽  
Vol 56 (69) ◽  
pp. 415-424 ◽  
Author(s):  
Alison L. Kohout ◽  
Bill Penrose ◽  
Scott Penrose ◽  
Michael J.M. Williams

AbstractA series of wave instruments was deployed on first-year Antarctic sea ice during SIPEX (Sea Ice Physics and Ecosystem Experiment) II. Here we describe the hardware and software design of these instruments and give an overview of the returned dataset. Each instrument consisted of a high-resolution accelerometer coupled with a tri-axis inertial measurement unit, which was located using GPS. The significant wave heights measured near the ice edge were predominately between 1 and 2 m. During the 6 weeks of data capture, several large wave events were measured. We report here a selection of events, highlighting the complexities associated with measuring wave decay at individual frequencies.

2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2020 ◽  
Vol 61 (82) ◽  
pp. 196-209 ◽  
Author(s):  
Alison L. Kohout ◽  
Madison Smith ◽  
Lettie A. Roach ◽  
Guy Williams ◽  
Fabien Montiel ◽  
...  

AbstractQuantifying the rate of wave attenuation in sea ice is key to understanding trends in the Antarctic marginal ice zone extent. However, a paucity of observations of waves in sea ice limits progress on this front. We deployed 14 waves-in-ice observation systems (WIIOS) on Antarctic sea ice during the Polynyas, Ice Production, and seasonal Evolution in the Ross Sea expedition (PIPERS) in 2017. The WIIOS provide in situ measurement of surface wave characteristics. Two experiments were conducted, one while the ship was inbound and one outbound. The sea ice throughout the experiments generally consisted of pancake and young ice <0.5 m thick. The WIIOS survived a minimum of 4 d and a maximum of 6 weeks. Several large-wave events were captured, with the largest recorded significant wave height over 9 m. We find that the total wave energy measured by the WIIOS generally decays exponentially in the ice and the rate of decay depends on ice concentration.


Polar Record ◽  
1991 ◽  
Vol 27 (162) ◽  
pp. 249-253 ◽  
Author(s):  
Gotthilf Hempel

AbstractSeasonal ice of the Southern Ocean, occupying some 15 x 106 km2, supports a distinctive biota based on algae that live on, within and immediately beneath the ice floes. How this annually-forming habitat recruits its biota, and the fate of the biota after the ice thaws in late summer, are little-known. Studies in the Weddell Sea in 1984–88 have shown that the seasonal ice is important as the wintering substrate of krill Euphausia superba which, together with other zooplankton and fish, supports a large breeding population of seals and penguins. Clearly a key habitat in the economy of the Southern Ocean, this seasonal ice is likely to be vulnerable to small climatic changes.


2011 ◽  
Vol 52 (57) ◽  
pp. 161-168 ◽  
Author(s):  
Keleigh Jones ◽  
Malcolm Ingham ◽  
Daniel Pringle ◽  
Hajo Eicken

AbstractAs an inhomogeneous mixture of pure ice, brine, air and solid salts the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations in temperature and salinity is crucial in developing an improved understanding of the interaction between sea ice and the environment. However, measurements monitoring the internal structure of sea ice are difficult to obtain without disturbing its natural state. We have recently developed an application of cross-borehole d.c. resistivity tomography to make in situ measurements that resolve the anisotropic resistivity structure of first-year sea ice. We present results from measurements made in 2008 off Barrow, Alaska, and in 2009 off Ross Island, Antarctica. the sea ice in these two regions forms in different environments: at Barrow, relatively quiescent conditions typically lead to a predominance of columnar ice, while more turbulent conditions and underwater ice formation in McMurdo Sound tend to produce a larger component of frazil or platelet ice. Interpretation of the resistivity measurements carried out in association with temperature and salinity data collected simultaneously allows both observation of the temporal evolution of the ice structure and, in the case of the Antarctic measurements, the identification of different ice types.


2018 ◽  
Author(s):  
Zhankai Wu ◽  
Xingdong Wang

This study was based on the daily sea ice concentration data from the National Snow and Ice Data Center (Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USA) from 1998 to 2017. The Antarctic sea ice was analysed from the total sea ice area (SIA), first year ice area, first year ice melt duration, and multiyear ice area. On a temporal scale, the changes in sea ice parameters were studied over the whole 20 years and for two 10-year periods. The results showed that the total SIA increased by 0.0083×106 km2 yr-1 (+2.07% dec-1) between 1998 and 2017. However, the total SIA in the two 10-year periods showed opposite trends, in which the total SIA increased by 0.026×106 km2 yr-1 between 1998 and 2007 and decreased by 0.0707×106 km2 yr-1 from 2008 to 2017. The first year ice area increased by 0.0059×106 km2 yr-1 and the melt duration decreased by 0.0908 days yr-1 between 1998 and 2017. The multiyear ice area increased by 0.0154×106 km2 yr-1 from 1998 to 2017, and the increase in the last 10 years was about 12.1% more than that in the first 10 years. On a spatial scale, the Entire Antarctica was divided into two areas, namely West Antarctica (WA) and East Antarctica (EA), according to the spatial change rate of sea ice concentration. The results showed that WA had clear warming in recent years; the total sea ice and multiyear ice areas showed a decreasing trend; multiyear ice area sharply decreased and reached the lowest value in 2017, and accounted for only about 10.1% of the 20-year average. However, the total SIA and multiyear ice area all showed an increased trend in EA, in which the multiyear ice area increased by 0.0478×106 km2 yr-1. Therefore, Antarctic sea ice presented an increasing trend, but there were different trends in WA and EA. Different sea ice parameters in WA and EA showed an opposite trend from 1998 to 2007. However, the total SIA, first year ice area, and multiyear ice area all showed a decreasing trend from 2008-2017, especially the total sea ice and first year ice, which changed almost the same in 2014-2017. In summary, although the Antarctic sea ice has increased slightly over time, it has shown a decreasing trend in recent years.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Jacqueline Bertlich ◽  
Nikolaus Gussone ◽  
Jasper Berndt ◽  
Heinrich F. Arlinghaus ◽  
Gerhard S. Dieckmann

AbstractThis study presents culture experiments of the cold water species Neogloboquadrina pachyderma (sinistral) and provides new insights into the incorporation of elements in foraminiferal calcite of common and newly established proxies for paleoenvironmental applications (shell Mg/Ca, Sr/Ca and Na/Ca). Specimens were collected from sea ice during the austral winter in the Antarctic Weddell Sea and subsequently cultured at different salinities and a constant temperature. Incorporation of the fluorescent dye calcein showed new chamber formation in the culture at salinities of 30, 31, and 69. Cultured foraminifers at salinities of 46 to 83 only revealed chamber wall thickening, indicated by the fluorescence of the whole shell. Signs of reproduction and the associated gametogenic calcite were not observed in any of the culture experiments. Trace element analyses were performed using an electron microprobe, which revealed increased shell Mg/Ca, Sr/Ca, and Na/Ca values at higher salinities, with Mg/Ca showing the lowest sensitivity to salinity changes. This study enhances the knowledge about unusually high element concentrations in foraminifera shells from high latitudes. Neogloboquadrina pachyderma appears to be able to calcify in the Antarctic sea ice within brine channels, which have low temperatures and exceptionally high salinities due to ongoing sea ice formation.


2019 ◽  
Vol 223 (2) ◽  
pp. 675-691 ◽  
Author(s):  
Fraser Kennedy ◽  
Andrew Martin ◽  
John P. Bowman ◽  
Richard Wilson ◽  
Andrew McMinn

Author(s):  
Mathilde Jutras ◽  
Martin Vancoppenolle ◽  
Antonio Lourenço ◽  
Frédéric Vivier ◽  
Gauthier Carnat ◽  
...  

1990 ◽  
Vol 14 ◽  
pp. 331 ◽  
Author(s):  
Richard Brandt ◽  
Ian Allison ◽  
Stephen Warren

Reflection of solar radiation was studied in the seasonal sea-ice zone off East Antarctica on a cruise of the Australian Antarctic Expedition, October-December 1988. Spectral and total albedos were measured for grease ice, nilas, young grey ice, grey-white ice, snow-covered ice, and open water. Spectral measurements covered the region 400–1000 nm wavelength. For ice too thin to support our weight, the radiometers were mounted at the end of a 1.5 m rod extended out the door of a helicopter or from a basket hung from the ship's crane, using a positioning and leveling rack. Corrections had to be applied to the downward radiation flux because the helicopter or the crane was in the field of view of the cosine-collector. The fractional coverage of each of the ice types (and open water) was estimated hourly for the region near the ship, as well as the thickness of each ice type, and the snow thickness. Observations were carried out continuously during the four weeks the ship was in the ice, supplemented by occasional helicopter surveys covering larger areas. These observations, together with the radiation measurements, make possible the computation of area-average albedo for the East Antarctic sea-ice zone in spring.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


Sign in / Sign up

Export Citation Format

Share Document