scholarly journals Crevasse patterns at the onset to Ice Stream B, West Antarctica

2001 ◽  
Vol 47 (156) ◽  
pp. 29-36 ◽  
Author(s):  
S. F. Price ◽  
I. M. Whillans

AbstractSequential satellite imagery and modeling are used to investigate crevasse patterns at the head of Ice Stream B tributary B1b. The crevasses, informally called the “chromosomes”, form at the upstream limit to B1b’s northern shear margin and chaotic crevasse zone. We find that the onset to crevasse formation, and by inference the onset to streaming flow, has migrated upstream over time at a mean rate of 230(16) m a−1. A possible cause for that migration is changes in net basal friction due to changes in basal water production rate and storage.

1993 ◽  
Vol 39 (133) ◽  
pp. 483-590 ◽  
Author(s):  
I. M. Whillans ◽  
C.J. Van Der Veen

AbstractMeasurements of velocity have been made on and next to Ice Streams Β and C, West Antarctica. The results are more precise than previous work and constitute a 93% increase in the number of values. These velocities are used to describe the confluence of flow into the ice streams and the development of fast ice-stream flow. The onset of fast-streaming flow occurs in many separate tributaries that coalesce down-glacier into the major ice streams. For those inter-stream ridges that have been studied, the flow is consistent with steady state. Along Ice Stream B, gradients in longitudinal stress offer little resistance to the ice flow. The transition from basal-drag control to ice-shelf flow is achieved through reduced drag at the glacier base and increased resistance associated with lateral drag. Velocities in the trunk of Ice Stream C are nearly zero but those at the up-glacial head are similar to those at the head of Ice Stream B.


1993 ◽  
Vol 39 (133) ◽  
pp. 483-590 ◽  
Author(s):  
I. M. Whillans ◽  
C.J. Van Der Veen

Abstract Measurements of velocity have been made on and next to Ice Streams Β and C, West Antarctica. The results are more precise than previous work and constitute a 93% increase in the number of values. These velocities are used to describe the confluence of flow into the ice streams and the development of fast ice-stream flow. The onset of fast-streaming flow occurs in many separate tributaries that coalesce down-glacier into the major ice streams. For those inter-stream ridges that have been studied, the flow is consistent with steady state. Along Ice Stream B, gradients in longitudinal stress offer little resistance to the ice flow. The transition from basal-drag control to ice-shelf flow is achieved through reduced drag at the glacier base and increased resistance associated with lateral drag. Velocities in the trunk of Ice Stream C are nearly zero but those at the up-glacial head are similar to those at the head of Ice Stream B.


1992 ◽  
Vol 38 (128) ◽  
pp. 157-161 ◽  
Author(s):  
J. McDonald ◽  
I. M. Whillans

AbstractThe position of the UpB camp on Ice Stream B, West Antarctica, has been measured 14 times during three field seasons. TRANSIT (doppler) satellite receivers were used. At the resolution of our measurements (2 m), no significant velocity variation was detected over time intervals ranging from 1 d to 2 years.


1992 ◽  
Vol 38 (128) ◽  
pp. 157-161 ◽  
Author(s):  
J. McDonald ◽  
I. M. Whillans

AbstractThe position of the UpB camp on Ice Stream B, West Antarctica, has been measured 14 times during three field seasons. TRANSIT (doppler) satellite receivers were used. At the resolution of our measurements (2 m), no significant velocity variation was detected over time intervals ranging from 1 d to 2 years.


1986 ◽  
Vol 8 ◽  
pp. 168-170 ◽  
Author(s):  
P.L. Vornberger ◽  
I.M. Whillans

Aerial photographs have been obtained of Ice Stream B, one of the active ice streams draining the West Antarctic Ice Sheet. A sketch map made from these photographs shows two tributaries. The margin of the active ice is marked by curved crevasses and intense crevassing occurs just inward of them. Transverse crevasses dominate the center of the ice streams and diagonal types appear at the lower end. A “suture zone” originates at the tributary convergence and longitudinal surface ridges occur at the downglacier end. The causes of these surface features are discussed and the relative importance of four stresses in resisting the driving stress is assessed. We conclude that basal drag may be important, longitudinal compression is probably important at the lower end, and longitudinal tension is probably most important near the head of the ice stream. Side drag leads to shearing at the margins, but does not restrain much of the ice stream.


1998 ◽  
Vol 44 (146) ◽  
pp. 149-156 ◽  
Author(s):  
C. R. Bentley ◽  
N. Lord ◽  
C. Liu

AbstractDigital airborne radar data were collected during the 1987-88 Antarctic field season in nine gridded blocks covering the downstream portions of Ice Stream B (6km spacing) and Ice Stream C (11 km spacing), together with a portion of ridge BC between them. An automated processing procedure was used for picking onset times of the reflected radar pulses, converting travel times to distances, interpolating missing data, converting pressure transducer readings, correcting navigational drift, performing crossover analysis, and zeroing rémanent crossover errors. Interpolation between flight-lines was carried out using the minimum curvature method.Maps of ice thickness (estimated accuracy 20 m) and basal-reflection strength (estimated accuracy 1 dB) were produced. The ice-thickness map confirms the characteristics of previous reconnaissance maps and reveals no new features. The reflection-strength map shows pronounced contrasts between the ice streams and ridge BC and between the two ice streams themselves. We interpret the reflection strengths to mean that the bed of Ice Stream C, as well as that of Ice Stream B, is unfrozen, that the bed of ridge BC is frozen and that the boundary between the frozen bed of ridge BC and the unfrozen bed of Ice Stream C lies precisely below the former shear margin of the ice stream.


1988 ◽  
Vol 11 ◽  
pp. 210 ◽  
Author(s):  
Sean T. Rooney ◽  
D. D. Blankenship ◽  
R. B. Alley ◽  
C. R. Bentley

Seismic-reflection profiling has previously shown that, at least at one location. Ice Stream Β in West Antarctica rests on a layer of till a few meters thick (Blankenship and others 1986). Analyses of both compressional- and shear-wave seismic reflections from the ice–till boundary confirm the results of those earlier studies, which showed that the till is water-saturated and has a high porosity and low differential pressure. We conclude that this till is basically homogeneous, at least on a scale of tens of kilometers, though some evidence that its properties vary laterally can be discerned in these data. We propose that the till is widespread beneath Ice Stream Β and probably also beneath the other West Antarctic ice streams. Our seismic profiling shows that the till is essentially continuous beneath Ice Stream Β over at least 12 km parallel to ice flow and 8 km transverse to flow. Beneath these profiles the till averages about 6.5 m thick and is present everywhere except possibly on isolated bedrock ridges parallel to ice flow. The till thickness on these bedrock ridges falls to less than 2 m, the limit of our seismic resolution, but there is evidence that the ridges do not impede ice flow substantially. The bedrock beneath the till is fluted parallel to flow, with flutes that are 10–13 m deep by 200–1000 m wide; we believe these flutes are formed by erosion beneath a deforming till. We also observe an angular unconformity at the base of the till, which is consistent with the idea that erosion is occurring there. The sedimentary record in the Ross Embayment looks very similar to that beneath Ice Stream B, i.e. a few meters of till resting unconformably (the Ross Sea unconformity) on lithified sedimentary rock, and we postulate that the Ross Sea unconformity was generated by erosion beneath a grounded ice sheet by a deforming till.


2000 ◽  
Vol 46 (152) ◽  
pp. 95-101 ◽  
Author(s):  
Robert Bindschadler ◽  
Xin Chen ◽  
Patricia Vornberger

AbstractSurface flow in a 10 000 km2 expanse of the onset area of Ice Stream D, West Antarctica, was measured by repeat, precise global positioning system surveys over a 1 year interval. The pattern of velocity and strain rate shows the development of Ice Stream D, the major flow into which originates south of Byrd station and follows the course of a deep bed channel. Plotting of the driving stress vs the ratio of velocity and ice thickness identifies the onset of streaming flow (roughly 140 km downstream of Byrd station) as a transition between deformation flow and sliding flow. Along the kinematic center line of the developing ice stream, the ice rheology is linear at stresses below 0.6 bar, and appears temperate at the base well before the onset of streaming is reached. The onset corresponds to a maximum driving stress of 0.8 bar. It occurs downstream of a slight increase in longitudinal strain rate where stronger along-flow lineations are apparent in Landsat imagery, and after the ice has passed the center of an overdeepening in the bed channel. No current deviation from equilibrium is detected in this region, but a set of flow stripes misaligned with present flow indicates significant changes in flow have occurred in the past.


1998 ◽  
Vol 27 ◽  
pp. 140-144 ◽  
Author(s):  
S. F. Price ◽  
I. M. Whillans

The determination of catchment boundaries is a major source of uncertainty in net balance studies on large ice sheets. Here, a method for defining a catchment boundary is developed using new measurements of ice-surface velocity and elevation near the Ice Stream B/C boundary in West Antarctica. An objective method for estimating confidence in the catchment boundary is proposed. Using elevation data, the resulting mean standard deviation in boundary location is 13 km in position or 6000 km2 in area. Applying a similar uncertainty to both sides of the Ice Stream Β catchment results in a catchment-area uncertainty of 9%. Much larger uncertainties arise when the method is applied to velocity data. The uncertainty in both cases is primarily determined by the density of field measurements and is proportionally similar for larger catchment basins. Differences in the position of the velocity-determined boundary and the elevation-determined boundary probably result from data sampling. The boundary positions determined here do not support the hypothesis that Ice Stream Β captured parts of the Ice Stream C catchment.


1993 ◽  
Vol 39 (133) ◽  
pp. 455-462 ◽  
Author(s):  
S. Anandakrishnan ◽  
C. R. Bentley

Abstract Micro-earthquakes have been monitored at two locations on Ice Stream Β and one on Ice Stream C using a seismographic array built specifically for that purpose. Subglacial micro-earthquakes arc 20 times more abundant beneath Ice Stream C than beneath Ice Stream B, despite the 100 times more rapid movement of Ice Stream B. Triangulation shows the foci beneath Ice Stream C, like those beneath Ice Stream B, to be within a few meters of the base of the ice, presumably within the uppermost part of the bed, and fault-plane analysis indicates slips on horizontal planes at about a 30° angle to the presumed direction of formerly active flow. Source parameters, computed from spectra of the arrivals, confirmed that the speed of slip is three orders of magnitude faster beneath Ice Stream C than beneath Ice Stream Β which means that a five orders-of-magnitude greater fraction of the velocity of Ice Stream C is contributed by the faulting, although that fraction is still small. We attribute the difference in activity beneath the two ice streams to the loss of dilatancy in the till beneath Ice Stream C in the process that led to its stagnation.


Sign in / Sign up

Export Citation Format

Share Document