scholarly journals Towards a conceptual approach to predetermining long-return-period avalanche run-out distances

2004 ◽  
Vol 50 (169) ◽  
pp. 268-278 ◽  
Author(s):  
Maurice Meunier ◽  
Christophe Ancey

AbstractInvestigating snow avalanches using a purely statistical approach raises several issues. First, even in the heavily populated areas of the Alps, there are few data on avalanche motion or extension. Second, most of the field data are related to the point of furthest reach in the avalanche path (run-out distance or altitude). As data of this kind are tightly dependent on the avalanche path profile, it is a priori not permissible to extrapolate the cumulative distribution function fitted to these data without severe restrictions or further assumptions. Using deterministic models is also problematic, as these are not really physically based models. For instance, they do not include all the phenomena occurring in the avalanche movement, and the rheological behaviour of the snow is not known. Consequently, it is not easy to predetermine extreme-event extensions. Here, in order to overcome this problem, we propose to use a conceptual approach. First, using an avalanche-dynamics numerical model, we fitted the model parameters (friction coefficients and the volume of snow involved in the avalanches) to the field data. Then, using these parameters as random variables, we adjusted appropriate statistical distributions. The last steps involved simulating a large number of (fictitious) avalanches using the Monte Carlo approach. Thus, the cumulative distribution function of the run-out distance can be computed over a much broader range than was initially possible with the historical data. In this paper, we develop the proposed method through a complete case study, comparing two different models.

2021 ◽  
Vol 26 (3) ◽  
pp. 62
Author(s):  
Zichuan Mi ◽  
Saddam Hussain ◽  
Christophe Chesneau

In recent advances in distribution theory, the Weibull distribution has often been used to generate new classes of univariate continuous distributions. They find many applications in important disciplines such as medicine, biology, engineering, economics, informatics, and finance; their usefulness is synonymous with success. In this study, a new Weibull-generated-type class is presented, called the weighted odd Weibull generated class. Its definition is based on a cumulative distribution function, which combines a specific weighted odd function with the cumulative distribution function of the Weibull distribution. This weighted function was chosen to make the new class a real alternative in the first-order stochastic sense to two of the most famous existing Weibull generated classes: the Weibull-G and Weibull-H classes. Its mathematical properties are provided, leading to the study of various probabilistic functions and measures of interest. In a consequent part of the study, the focus is on a special three-parameter survival distribution of the new class defined with the standard exponential distribution as a reference. The exploratory analysis reveals a high level of adaptability of the corresponding probability density and hazard rate functions; the curves of the probability density function can be decreasing, reversed N shaped, and unimodal with heterogeneous skewness and tail weight properties, and the curves of the hazard rate function demonstrate increasing, decreasing, almost constant, and bathtub shapes. These qualities are often required for diverse data fitting purposes. In light of the above, the corresponding data fitting methodology has been developed; we estimate the model parameters via the likelihood function maximization method, the efficiency of which is proven by a detailed simulation study. Then, the new model is applied to engineering and environmental data, surpassing several generalizations or extensions of the exponential model, including some derived from established Weibull-generated classes; the Weibull-G and Weibull-H classes are considered. Standard criteria give credit to the proposed model; for the considered data, it is considered the best.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 598 ◽  
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

In this paper, we first show a new probability result which can be concisely formulated as follows: the function 2 G β / ( 1 + G α ) , where G denotes a baseline cumulative distribution function of a continuous distribution, can have the properties of a cumulative distribution function beyond the standard assumptions on α and β (possibly different and negative, among others). Then, we provide a complete mathematical treatment of the corresponding family of distributions, called the ratio exponentiated general family. To link it with the existing literature, it constitutes a natural extension of the type II half logistic-G family or, from another point of view, a compromise between the so-called exponentiated-G and Marshall-Olkin-G families. We show that it possesses tractable probability functions, desirable stochastic ordering properties and simple analytical expressions for the moments, among others. Also, it reaches high levels of flexibility in a wide statistical sense, mainly thanks to the wide ranges of possible values for α and β and thus, can be used quite effectively for the real data analysis. We illustrate this last point by considering the Weibull distribution as baseline and three practical data sets, with estimation of the model parameters by the maximum likelihood method.


2020 ◽  
Vol 4 (1) ◽  
pp. 22-38
Author(s):  
Akinlolu Olosunde ◽  
Tosin Adekoya

In this paper an exponentiated generalised Gompertz-Makeham distribution. An exponentiated generalised family was introduced by Codeiro, et. al., which allows greater flexibility in the analysis of data. Some Mathematical and Statistical properties including cumulative distribution function, hazard function and survival function of the distribution are derived. The estimation of model parameters are derived via the maximum likelihood estimate method.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document