scholarly journals A new depositional model for ice shelves, based upon sediment cores from the Ross Sea and the MaC. Robertson shelf, Antarctica

1998 ◽  
Vol 27 ◽  
pp. 281-284 ◽  
Author(s):  
Eugene W. Domack ◽  
P.T. Harris

We document the similarity of depositional facies occurring in gravity cores recovered from two disjunct regions of the Antarctic continental shelf: the Ross Sea and the MaC. Robertson shelf. The facies sequence model is represented in two cores, one collected during the 1995-1 cruise of the R/VNathaniel R. Palmer(core NBP95 TC-18) and the other collected by the RSVAurora Australisduring cruise 149 in 1995 (core 149 39GC38). Both cores show a succession of facies indicative of ice-shelf retreat during the late-Pleistocene to Holocene transition. Distinct lithofacies range in thickness from a few tens of cm to 1 m and consist of (from bottom to top) a coarse, granulated sandy mud; laminated silt and clay; structureless silly clay; poorly sorted sandy siliceous mud; and siliceous mud and ooze. These facies represent the passage of distinct depositional regimes across the core sites, including sub-ice shelf beneath a basal debris zone; sub-ice shell distal to a debris zone; calving-line transition; and open marine. This facies model represents an advance in our understanding of Glacial marine stratigraphy for the Antarctic continental shelf and will provide the basis for more realistic palaeoglacial reconstructions.

2017 ◽  
Author(s):  
Pierre Mathiot ◽  
Adrian Jenkins ◽  
Christopher Harris ◽  
Gurvan Madec

Abstract. Ice shelf/ocean interactions are a major source of fresh water on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean/sea ice model NEMO currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface) inclusion of open sub-ice-shelf leads to a decrease sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of HSSW on the Ross and Weddell Sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the under ice shelf seas overturning circulation by introducing the meltwater over the depth range of the ice shelf base, rather than at the surface is also tested. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf than the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely-used “3 equations” ice shelf melting formulation enables an interactive computation of melting that has been assessed. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for Amery, Getz and George VI ice shelves are considerably overestimated.


2016 ◽  
Vol 113 (9) ◽  
pp. 2354-2359 ◽  
Author(s):  
Yusuke Yokoyama ◽  
John B. Anderson ◽  
Masako Yamane ◽  
Lauren M. Simkins ◽  
Yosuke Miyairi ◽  
...  

The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (−560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km2) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium (10Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf.


2017 ◽  
Vol 10 (7) ◽  
pp. 2849-2874 ◽  
Author(s):  
Pierre Mathiot ◽  
Adrian Jenkins ◽  
Christopher Harris ◽  
Gurvan Madec

Abstract. Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.


2021 ◽  
Author(s):  
Hannah Dawson ◽  
Adele Morrison ◽  
Veronica Tamsitt ◽  
Matthew England

<p><span xml:lang="EN-US" data-contrast="auto"><span>The Antarctic margin is surrounded by two westward flowing currents: the Antarctic Slope Current and the Antarctic Coastal Current. The former influences key processes near the Antarctic margin by regulating the flow of heat and nutrients onto and off the continental shelf, while together they </span></span><span xml:lang="EN-US" data-contrast="auto"><span>advect</span></span><span xml:lang="EN-US" data-contrast="auto"><span> nutrients, biological organisms, and temperature and salinity anomalies around the coastline, providing a connective link between different shelf regions. However, the extent to which these currents transport water from one sector of the continental shelf to another, and the timescales over which this occurs, remain poorly understood. Concern that crucial water formation sites around the Antarctic coastline could respond to non-local freshwater forcing </span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>from ice shel</span></span></span><span><span xml:lang="EN-US" data-contrast="auto"><span>f meltwater</span></span></span> <span xml:lang="EN-US" data-contrast="auto"><span>motivates a more thorough understanding of zonal connectivity around Antarctica. In this study, we use daily velocity fields from a global high-resolution ocean-sea ice model, combined with the <span>Lagrangian</span> tracking software Parcels, to investigate the pathways and timescales connecting different regions of the Antarctic continental shelf<span> with a view to understanding</span><span> the timescales of meltwater transport around the continent</span>. Virtual particles are released over the continental shelf, poleward of the 1000 <span>metre</span> isobath, and are tracked for 20 years. Our results show a strong seasonal cycle connecting different sectors of the Antarctic continent, with more particles arriving further downstream during winter than during summer months. Strong advective links exist between West Antarctica and the Ross Sea while shelf geometry in some other regions acts as barriers to transport. We also highlight the varying importance of the Antarctic Slope Current and Antarctic Coastal Current in connecting different sectors of the coastline. Our results help to improve our understanding of circum-Antarctic connectivity <span>and the timescales </span><span>of meltwater transport from source regions to downstream </span><span>shelf locations. </span><span>Further</span><span>more, t</span><span>he timescales and pathways we </span><span>present </span><span>p</span>rovide a baseline from which to assess long-term changes in Antarctic coastal circulation due to local and remote forcing.<br></span></span></p>


1988 ◽  
Vol 11 ◽  
pp. 161-164 ◽  
Author(s):  
M. H. Talbot

A collation of available data shows that sea-water with a temperature 3°C above the in-situ freezing point lies beneath George VI Ice Shelf in the Antarctic Peninsula, and is widespread on the Amundsen-Bellingshausen continental shelf. The presence of warm water is a factor in the recent and continuing disintegration of ice shelves in the region, yet the meteorology and oceanography of the sector are little known. We discuss a plausible link between the present climatic conditions, sea-water characteristics and the warm-water intrusion on to the continental shelf, thereby illustrating an indirect climatic influence on the mass balance of ice shelves.


Science ◽  
2014 ◽  
Vol 346 (6214) ◽  
pp. 1227-1231 ◽  
Author(s):  
Sunke Schmidtko ◽  
Karen J. Heywood ◽  
Andrew F. Thompson ◽  
Shigeru Aoki

Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of long-term large-scale trends in temperature, salinity, and core depth over the Antarctic continental shelf and slope. Warming at the seabed in the Bellingshausen and Amundsen seas is linked to increased heat content and to a shoaling of the mid-depth temperature maximum over the continental slope, allowing warmer, saltier water greater access to the shelf in recent years. Regions of ASBW warming are those exhibiting increased ice shelf melt.


1998 ◽  
Vol 27 ◽  
pp. 93-98 ◽  
Author(s):  
Harry J. R. Keys ◽  
Stanley S. Jacobs ◽  
Lawson W. Brigham

The last major calving event along the Ross Ice Shelf (RIS, Antarctica) front occurred a decade ago, following a substantial increase in the rate of ice-front advance in the few years preceding the event. This “B-9” event, on the eastern part of the front between Edward VII Peninsula and Roosevelt Island, removed ≈ 5100 km2of ice, about 100 years of advance in that sector, but reduced the ice-shelf area by only 1%. Since 1987 the entire ice front has continued to advance, more than regaining the area lost during the B-9 event. The western front is now well north of any position recorded during the last 150 years, and it lias not experienced major calving forat least 90 years. Ice-front heights generally decrease from east to west, but local variability is high. Elevations are relatively low from 171° to 177° W, the location of “warm” Modified Circumpolar Deep Water circulation beneath the outer ice shelf. Modern heights considerably exceed historical heights between 179° Wand 178° E and are lower west of 174° E, probably due to recent dynamic changes such as rifting and the western advance. The general advance of the RIS front and the period of several decades to more than a century that elapses between major calving events is consistent with a relatively stable ice front. This contrasts with several smaller ice shelves along the Antarctic Peninsula and McMurdo Ice Shelf in the Ross Sea which have retreated substantially during the past few decades.


Sign in / Sign up

Export Citation Format

Share Document