scholarly journals 21st-century increase in glacier mass loss in the Wrangell Mountains, Alaska, USA, from airborne laser altimetry and satellite stereo imagery

2014 ◽  
Vol 60 (220) ◽  
pp. 283-293 ◽  
Author(s):  
Indrani Das ◽  
Regine Hock ◽  
Etienne Berthier ◽  
Craig S. Lingle

AbstractAlaskan glaciers are among the largest regional contributors to sea-level rise in the latter half of the 20th century. Earlier studies have documented extensive and accelerated ice wastage in most regions of Alaska. Here we study five decades of mass loss on high-elevation, land-terminating glaciers of the Wrangell Mountains (~ 4900 km2) in central Alaska based on airborne center-line laser altimetry data from 2000 and 2007, a digital elevation model (DEM) from ASTER and SPOT5, and US Geological Survey topographic maps from 1957. The regional mass-balance estimates derived from center-line laser altimetry profiles using two regional extrapolation techniques agree well with that from DEM differencing. Repeat altimetry measurements reveal accelerated mass loss over the Wrangell Mountains, with the regional mass-balance rate evolving from –0.07 ± 0.19 m w.e. a–1 during 1957–2000 to –0.24 ± 0.16 m w.e. a–1 during 2000–07. Nabesna, the largest glacier in this region (˜1056 km2), lost mass four times faster during 2000–07 than during 1957–2000. Although accelerated, the mass change over this region is slower than in other glacierized regions of Alaska, particularly those with tidewater glaciers. Together, our laser altimetry and satellite DEM analyses demonstrate increased wastage of these glaciers during the last 50 years.

2013 ◽  
Vol 59 (216) ◽  
pp. 632-648 ◽  
Author(s):  
Austin J. Johnson ◽  
Christopher F. Larsen ◽  
Nathaniel Murphy ◽  
Anthony A. Arendt ◽  
S. Lee Zirnheld

AbstractThe Glacier Bay region of southeast Alaska, USA, and British Columbia, Canada, has undergone major glacier retreat since the Little Ice Age (LIA). We used airborne laser altimetry elevation data acquired between 1995 and 2011 to estimate the mass loss of the Glacier Bay region over four time periods (1995–2000, 2000–05, 2005–09, 2009–11). For each glacier, we extrapolated from center-line profiles to the entire glacier to estimate glacier-wide mass balance, and then averaged these results over the entire region using three difference methods (normalized elevation, area-weighted method and simple average). We found that there was large interannual variability of the mass loss since 1995 compared with the long-term (post-LIA) average. For the full period (1995–2011) the average mass loss was 3.93 ± 0.89 Gt a−1 (0.6 ± 0.1 m w.e. a−1), compared with 17.8 Gt a−1 for the post-LIA (1770–1948) rate. Our mass loss rate is consistent with GRACE gravity signal changes for the 2003–10 period. Our results also show that there is a lower bias due to center-line profiling than was previously found by a digital elevation model difference method.


2020 ◽  
Vol 66 (258) ◽  
pp. 603-617 ◽  
Author(s):  
Ruitang Yang ◽  
Regine Hock ◽  
Shichang Kang ◽  
Donghui Shangguan ◽  
Wanqin Guo

AbstractGlacier mass loss in Alaska has implications for global sea level rise, fresh water input into the Gulf of Alaska and terrestrial fresh water resources. We map all glaciers (>4000 km2) on the Kenai Peninsula, south central Alaska, for the years 1986, 1995, 2005 and 2016, using satellite images. Changes in surface elevation and volume are determined by differencing a digital elevation model (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer stereo images in 2005 from the Interferometric Synthetic Aperture Radar DEM of 2014. The glacier area shrunk by 543 ± 123 km2 (12 ± 3%) between 1986 and 2016. The region-wide mass-balance rate between 2005 and 2014 was −0.94 ± 0.12 m w.e. a−1 (−3.84 ± 0.50 Gt a−1), which is almost twice as negative than found for earlier periods in previous studies indicating an acceleration in glacier mass loss in this region. Area-averaged mass changes were most negative for lake-terminating glaciers (−1.37 ± 0.13 m w.e. a−1), followed by land-terminating glaciers (−1.02 ± 0.13 m w.e. a−1) and tidewater glaciers (−0.45 ± 0.14 m w.e. a−1). Unambiguous attribution of the observed acceleration in mass loss over the last decades is hampered by the scarcity of observational data, especially at high elevation, and by large interannual variability.


2013 ◽  
Vol 7 (2) ◽  
pp. 975-1028 ◽  
Author(s):  
J. Gardelle ◽  
E. Berthier ◽  
Y. Arnaud ◽  
A. Kääb

Abstract. The recent evolution of Pamir-Karakoram-Himalaya (PKH) glaciers, widely acknowledged as valuable high-altitude as well as mid-latitude climatic indicators, remains poorly known. To overcome the lack of region-wide mass balance data, we compared the 2000 Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) to recent (2008–2011) DEMs derived from SPOT5 stereo-imagery for 8 sites spread from Pamir to eastern Himalaya. The region-wide glacier mass balances were contrasted during the last decade, with moderate mass losses in eastern and central Himalaya (−0.21 ± 0.10 m yr−1 w.e. to −0.29 ± 0.09 m yr−1 w.e.) and larger losses in western Himalaya (−0.41 ± 0.11 m yr−1 w.e.). Recently reported slight mass gain of glaciers in central Karakoram is confirmed for a larger area (+0.10 ± 0.19 m yr−1 w.e.) and, new, also observed for glaciers in western Pamir (+0.14 ± 0.10 m yr−1 w.e.). We propose that the "Karakoram anomaly" should be renamed the "Pamir-Karakoram anomaly", at least for the last decade. The overall mass balance of PKH glaciers is estimated at −0.12 ± 0.06 m yr−1 w.e. In contrast to Indus, the relative glacier imbalance contribution to Brahmaputra and Ganges discharges is higher than previously modeled glacier seasonal contribution.


2010 ◽  
Vol 4 (4) ◽  
pp. 2593-2613 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.


2020 ◽  
Vol 12 (4) ◽  
pp. 630
Author(s):  
Maciej Dąbski ◽  
Anna Zmarz ◽  
Mirosław Rodzewicz ◽  
Małgorzata Korczak-Abshire ◽  
Izabela Karsznia ◽  
...  

The aim of this article is to show geomorphological mapping of remote Antarctic locations using images taken by a fixed-wing unmanned aerial vehicle (UAV) during the Beyond Visual Line of Sight (BVLOS) operations. We mapped landform assemblages developed in forelands of Ecology Glacier (EGF), Sphinx Glacier (SGF) and Baranowski Glacier (BGF) in Antarctic Specially Protected Area No. 128 (ASPA 128) on King George Island (South Shetland Islands) and inferred about glacial dynamics. The orthophoto and digital elevation model allowed for geomorphological mapping of glacial forelands, including (i) glacial depositional landforms, (ii) fluvial and fluvioglacial landforms, (iii) littoral and lacustrine landforms, (iv) bodies of water, and (v) other. The largest area is occupied by ground moraine and glacial lagoons on EGF and BGF. The most profound features of EGF are the large latero-frontal moraine ridges from Little Ice Age and the first half of the 20th century. Large areas of ground moraine, frequently fluted and marked with large recessional moraine ridges, dominate on SGF. A significant percentage of bedrock outcrops and end moraine complexes characterize BGF. The landform assemblages are typical for discontinuous fast ice flow of tidewater glaciers over a deformable bed. It is inferred that ice flow velocity decreased as a result of recession from the sea coast, resulting in a significant decrease in the length of ice cliffs and decrease in calving rate. Image acquisition during the fixed-wing UAV BVLOS operation proved to be a very robust technique in harsh polar conditions of King George Island.


2019 ◽  
Vol 13 (2) ◽  
pp. 665-674 ◽  
Author(s):  
Ian M. Howat ◽  
Claire Porter ◽  
Benjamin E. Smith ◽  
Myoung-Jong Noh ◽  
Paul Morin

Abstract. The Reference Elevation Model of Antarctica (REMA) is the first continental-scale digital elevation model (DEM) at a resolution of less than 10 m. REMA is created from stereophotogrammetry with submeter resolution optical, commercial satellite imagery. The higher spatial and radiometric resolutions of this imagery enable high-quality surface extraction over the low-contrast ice sheet surface. The DEMs are registered to satellite radar and laser altimetry and are mosaicked to provide a continuous surface covering nearly 95 % the entire continent. The mosaic includes an error estimate and a time stamp, enabling change measurement. Typical elevation errors are less than 1 m, as validated by the comparison to airborne laser altimetry. REMA provides a powerful new resource for Antarctic science and provides a proof of concept for generating accurate high-resolution repeat topography at continental scales.


2015 ◽  
Vol 56 (70) ◽  
pp. 105-117 ◽  
Author(s):  
William Colgan ◽  
Jason E. Box ◽  
Morten L. Andersen ◽  
Xavier Fettweis ◽  
Beáta Csathó ◽  
...  

AbstractWe revisit the input–output mass budget of the high-elevation region of the Greenland ice sheet evaluated by the Program for Arctic Regional Climate Assessment (PARCA). Our revised reference period (1961–90) mass balance of 54±48 Gt a–1 is substantially greater than the 0±21 Gt a–1 assessed by PARCA, but consistent with a recent, fully independent, input–output estimate of high-elevation mass balance (41±61 Gt a–1). Together these estimates infer a reference period high-elevation specific mass balance of 4.8±5.4 cm w.e. a–1. The probability density function (PDF) associated with this combined input–output estimate infers an 81% likelihood of high-elevation specific mass balance being positive (>0 cm w.e. a–1) during the reference period, and a 70% likelihood that specific balance was >2 cm w.e. a–1. Given that reference period accumulation is characteristic of centurial and millennial means, and that in situ mass-balance observations exhibit a dependence on surface slope rather than surface mass balance, we suggest that millennial-scale ice dynamics are the primary driver of subtle reference period high-elevation mass gain. Failure to acknowledge subtle reference period dynamic mass gain can result in underestimating recent dynamic mass loss by ~17%, and recent total Greenland mass loss by ~7%.


2011 ◽  
Vol 5 (2) ◽  
pp. 349-358 ◽  
Author(s):  
T. Bolch ◽  
T. Pieczonka ◽  
D. I. Benn

Abstract. Mass loss of Himalayan glaciers has wide-ranging consequences such as changing runoff distribution, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated. Here, we present a time series of mass changes for ten glaciers covering an area of about 50 km2 south and west of Mt. Everest, Nepal, using stereo Corona spy imagery (years 1962 and 1970), aerial images and recent high resolution satellite data (Cartosat-1). This is the longest time series of mass changes in the Himalaya. We reveal that the glaciers have been significantly losing mass since at least 1970, despite thick debris cover. The specific mass loss for 1970–2007 is 0.32 ± 0.08 m w.e. a−1, however, not higher than the global average. Comparisons of the recent DTMs with earlier time periods indicate an accelerated mass loss. This is, however, hardly statistically significant due to high uncertainty, especially of the lower resolution ASTER DTM. The characteristics of surface lowering can be explained by spatial variations of glacier velocity, the thickness of the debris-cover, and ice melt due to exposed ice cliffs and ponds.


Sign in / Sign up

Export Citation Format

Share Document