scholarly journals Basal topographic controls on rapid retreat of Humboldt Glacier, northern Greenland

2015 ◽  
Vol 61 (225) ◽  
pp. 137-150 ◽  
Author(s):  
J.R. Carr ◽  
A. Vieli ◽  
C.R. Stokes ◽  
S.S.R. Jamieson ◽  
S.J. Palmer ◽  
...  

AbstractDischarge from marine-terminating outlet glaciers accounts for up to half the recent mass loss from the Greenland ice sheet, yet the causal factors are not fully understood. Here we assess the factors controlling the behaviour of Humboldt Glacier (HG), allowing us to evaluate the influence of basal topography on outlet glacier response to external forcing since part of HG’s terminus occupies a large overdeepening. HG’s retreat accelerated dramatically after 1999, coinciding with summer atmospheric warming of up to 0.19°C a–1 and sea-ice decline. Retreat was an order of magnitude greater in the northern section of the terminus, underlain by a major basal trough, than in the southern section, where the bedrock is comparatively shallow. Velocity change following retreat was spatially non-uniform, potentially due to a pinning point near HG’s northern lateral margin. Consistent with observations, numerical modelling demonstrates an order-of-magnitude greater sensitivity to sea-ice buttressing and crevasse depth (used as a proxy for atmospheric warming) in the northern section. The trough extends up to 72 km inland, so it is likely to facilitate sustained retreat and ice loss from HG during the 21st century.

2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


2021 ◽  
pp. 14-38
Author(s):  
Klaus Dodds ◽  
Jamie Woodward

‘The physical environment’ describes the Arctic as the polar opposite of the Antarctic continent as it is an ocean semi-enclosed by land. The rocks of the Arctic record key periods in Earth history. The Arctic environment has had an interesting path of evolution. Why is the Arctic cold today? The polar latitudes actually receive less solar energy than the rest of the Earth's surface. What is the key role of sea ice in the Arctic climate system? How does sea ice decline impact upon the Arctic Ocean? The Greenland ice sheet, high latitude glaciers, and the importance of permafrost in the far north are also important topics related to the physical environment.


1991 ◽  
Vol 37 (127) ◽  
pp. 368-382 ◽  
Author(s):  
K. Echelmeyer ◽  
T. S. Clarke ◽  
W.D. Harrison

AbstractJakobshavns Isbræ is a large, fast-moving ice stream/outlet glacier in West Greenland which ends at a floating, calving front. It drains about 6.5% of the area of the Greenland ice sheet. Studies of its surface morphology are described in this paper. The surface is relatively steep (0.01–0.03) and the thickness is large (up to 2600 m along the center line (Clarke and Echelmeyer, 1989)), indicating very high driving stresses (200–300 kPa). The ice stream is about 6 km wide and 85–90 km long, all of which is in an area of surface melting. The base of the ice stream, and of much of the drainage area, is below sea level. Marginal crevasse zones have a width on the order of the width of the ice stream itself. Unique surficial features are ice blisters and lakes; the latter have a sequence of ogive-like features on their floating ice cover which can be used to determine velocity. There is a pinning point near the terminus which may act as a stabilizing influence, possibly playing a role in halting, at least temporarily, a recent retreat of the terminus. Ice-thickness estimates at the terminus lead to a flux which is less than previously assumed by others (e.g. Bindschadler, 1984; Pelto and others, 1989) when estimating Jakobshavns Isbræ’s drainage basin to be nearly in balance.The driving stresses on Jakobshavns Isbræ are an order of magnitude higher than those of the ice streams of West Antarctica. Its crevasse patterns are much less localized. Its relatively unconfined terminus is more comparable to that of relatively unbuttressed ice streams such as Pine Island and Thwaites Glaciers than it is to other West Antarctic ice streams which terminate in large, confined ice shelves.


1991 ◽  
Vol 37 (127) ◽  
pp. 368-382 ◽  
Author(s):  
K. Echelmeyer ◽  
T. S. Clarke ◽  
W.D. Harrison

AbstractJakobshavns Isbræ is a large, fast-moving ice stream/outlet glacier in West Greenland which ends at a floating, calving front. It drains about 6.5% of the area of the Greenland ice sheet. Studies of its surface morphology are described in this paper. The surface is relatively steep (0.01–0.03) and the thickness is large (up to 2600 m along the center line (Clarke and Echelmeyer, 1989)), indicating very high driving stresses (200–300 kPa). The ice stream is about 6 km wide and 85–90 km long, all of which is in an area of surface melting. The base of the ice stream, and of much of the drainage area, is below sea level. Marginal crevasse zones have a width on the order of the width of the ice stream itself. Unique surficial features are ice blisters and lakes; the latter have a sequence of ogive-like features on their floating ice cover which can be used to determine velocity. There is a pinning point near the terminus which may act as a stabilizing influence, possibly playing a role in halting, at least temporarily, a recent retreat of the terminus. Ice-thickness estimates at the terminus lead to a flux which is less than previously assumed by others (e.g. Bindschadler, 1984; Pelto and others, 1989) when estimating Jakobshavns Isbræ’s drainage basin to be nearly in balance.The driving stresses on Jakobshavns Isbræ are an order of magnitude higher than those of the ice streams of West Antarctica. Its crevasse patterns are much less localized. Its relatively unconfined terminus is more comparable to that of relatively unbuttressed ice streams such as Pine Island and Thwaites Glaciers than it is to other West Antarctic ice streams which terminate in large, confined ice shelves.


2021 ◽  
pp. 1-14
Author(s):  
Joshua J. Williams ◽  
Noel Gourmelen ◽  
Peter Nienow

Abstract Greenland's future contribution to sea-level rise is strongly dependent on the extent to which dynamic perturbations, originating at the margin, can drive increased ice flow within the ice-sheet interior. However, reported observations of ice dynamical change at distances >~50 km from the margin have a very low spatial and temporal resolution. Consequently, the likely response of the ice-sheet's interior to future oceanic and atmospheric warming is poorly constrained. Through combining GPS and satellite-image-derived ice velocity measurements, we measure multi-decadal (1993–1997 to 2014–2018) velocity change at 45 inland sites, encompassing all regions of the ice sheet. We observe an almost ubiquitous acceleration inland of tidewater glaciers in west Greenland, consistent with acceleration and retreat at glacier termini, suggesting that terminus perturbations have propagated considerable distances (>100 km) inland. In contrast, outside of Kangerlussuaq, we observe no acceleration inland of tidewater glaciers in east Greenland despite terminus retreat and near-terminus acceleration, and suggest propagation may be limited by the influence of basal topography and ice geometry. This pattern of inland dynamical change indicates that Greenland's future contribution to sea-level will be spatially complex and will depend on the capacity for dynamic changes at individual outlet glacier termini to propagate inland.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ching-Yao Lai ◽  
Laura A. Stevens ◽  
Danielle L. Chase ◽  
Timothy T. Creyts ◽  
Mark D. Behn ◽  
...  

AbstractSurface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


Sign in / Sign up

Export Citation Format

Share Document