scholarly journals Morphology, Stratigraphy, and Genesis of Small Drumlins in Front of the Glacier Mýrdalsjökull, South Iceland

1984 ◽  
Vol 30 (104) ◽  
pp. 94-105 ◽  
Author(s):  
Johannes Krüger ◽  
Henrik Højmark Thomsen

AbstractInvestigations have been made of the geomorphology, internal structure, and till fabric of small drumlins in a drumlin field exposed in front of the retreating northern part of Mýrdalsjökull, Iceland. The drumlins either comprise irregular drumlin complexes or they show clearly the shape of typical drumlins with their highest points at the up-glacier ends of streamlined hills.The core of each drumlin consists either of undisturbed glacio-fluvial deposits or glacio-dynamically deformed drift. The distribution of the first type often has a characteristic en échelon arrangement, similar to the interstream areas in the upper reaches of outwash fans. The second type forms a pattern with a predominant trend conforming to the glacier margin; this type is superimposed on overridden ice-margin push-moraine ridges. It is shown that the material in the drumlin cores is only slightly eroded by the glacier that formed the drumlins. The core is mantled by subglacial lodgement till about 0.1–1.5 m in thickness.Seventeen fabric analyses of 25 clasts each were performed on material from within the till mantle. These analyses show a preferred long-axis orientation but indicate a considerable between-site variability ranging up to 45° even between samples taken a few metres apart. The preferred clast orientation for samples taken along the drumlin crests only deviates 0–10° from the regional ice-flow direction indicated by fluted moraines, whereas the deviation for samples from the flanks and the stoss-sides is up to 35°. However, the fabrics show a characteristic pattern relative to the shape of the drumlin; on their tops, the clast fabric parallels the ice-flow direction, whereas it tends to follow the contour direction on the flanks and stoss-sides.It is concluded that the cores of the drumlins consist of pre-existing deposits, whereas the mantles are composed of subglacial till. Regarding the processes involved, the material contained in the core is mainly eroded by pro-glacial melt-water streams and not by ice. During the subsequent flow of ice across the area, the most prominent terrain elements have acted as subglacial obstacles, leading to localized till deposition and drumlin formation. Thus, the drumlins were formed mainly by subglacial deposition of till but the obstacles acted as an essential factor favouring their initiation.

1984 ◽  
Vol 30 (104) ◽  
pp. 94-105 ◽  
Author(s):  
Johannes Krüger ◽  
Henrik Højmark Thomsen

AbstractInvestigations have been made of the geomorphology, internal structure, and till fabric of small drumlins in a drumlin field exposed in front of the retreating northern part of Mýrdalsjökull, Iceland. The drumlins either comprise irregular drumlin complexes or they show clearly the shape of typical drumlins with their highest points at the up-glacier ends of streamlined hills.The core of each drumlin consists either of undisturbed glacio-fluvial deposits or glacio-dynamically deformed drift. The distribution of the first type often has a characteristicen échelonarrangement, similar to the interstream areas in the upper reaches of outwash fans. The second type forms a pattern with a predominant trend conforming to the glacier margin; this type is superimposed on overridden ice-margin push-moraine ridges. It is shown that the material in the drumlin cores is only slightly eroded by the glacier that formed the drumlins. The core is mantled by subglacial lodgement till about 0.1–1.5 m in thickness.Seventeen fabric analyses of 25 clasts each were performed on material from within the till mantle. These analyses show a preferred long-axis orientation but indicate a considerable between-site variability ranging up to 45° even between samples taken a few metres apart. The preferred clast orientation for samples taken along the drumlin crests only deviates 0–10° from the regional ice-flow direction indicated by fluted moraines, whereas the deviation for samples from the flanks and the stoss-sides is up to 35°. However, the fabrics show a characteristic pattern relative to the shape of the drumlin; on their tops, the clast fabric parallels the ice-flow direction, whereas it tends to follow the contour direction on the flanks and stoss-sides.It is concluded that the cores of the drumlins consist of pre-existing deposits, whereas the mantles are composed of subglacial till. Regarding the processes involved, the material contained in the core is mainly eroded by pro-glacial melt-water streams and not by ice. During the subsequent flow of ice across the area, the most prominent terrain elements have acted as subglacial obstacles, leading to localized till deposition and drumlin formation. Thus, the drumlins were formed mainly by subglacial deposition of till but the obstacles acted as an essential factor favouring their initiation.


1985 ◽  
Vol 31 (109) ◽  
pp. 220-228 ◽  
Author(s):  
Scott D. Stanford ◽  
David M. Mickelson

AbstractDeep gravel-pit exposures reveal the distribution and structure of till and underlying sand and gravel in drumlins near Waukesha, Wisconsin. The subglacial sediment is interpreted to have moved laterally into the drumlin sites because the till thickens from the margin to the core of the drumlins, the stone orientation in the till is perpendicular and oblique to ice flow on the drumlin margins, and recumbent isoclinal folds occur in sand on the drumlin margins with axes parallel to the drumlin axes. The resulting accumulations of sediment presented obstacles to ice flow and were streamlined into the minimum-drag drumlin shape by erosion on the margins and by remolding of material in the core of the drumlins. These drumlin nuclei may have formed at spots where there was low effective stress on the bed. The subglacial sediment became mobile as a result of high pore pressure that may have developed as ground water and subglacial melt water were trapped behind a frozen bed at the ice margin. Under certain conditions, however, lateral sediment flow might also have occurred when the sediment was frozen.


1985 ◽  
Vol 31 (109) ◽  
pp. 220-228 ◽  
Author(s):  
Scott D. Stanford ◽  
David M. Mickelson

AbstractDeep gravel-pit exposures reveal the distribution and structure of till and underlying sand and gravel in drumlins near Waukesha, Wisconsin. The subglacial sediment is interpreted to have moved laterally into the drumlin sites because the till thickens from the margin to the core of the drumlins, the stone orientation in the till is perpendicular and oblique to ice flow on the drumlin margins, and recumbent isoclinal folds occur in sand on the drumlin margins with axes parallel to the drumlin axes. The resulting accumulations of sediment presented obstacles to ice flow and were streamlined into the minimum-drag drumlin shape by erosion on the margins and by remolding of material in the core of the drumlins. These drumlin nuclei may have formed at spots where there was low effective stress on the bed. The subglacial sediment became mobile as a result of high pore pressure that may have developed as ground water and subglacial melt water were trapped behind a frozen bed at the ice margin. Under certain conditions, however, lateral sediment flow might also have occurred when the sediment was frozen.


2006 ◽  
Vol 58 (2-3) ◽  
pp. 229-239 ◽  
Author(s):  
Anders E. Carlson ◽  
John W. Jenson ◽  
Peter U. Clark

Abstract We present sedimentological observations from the Tiskilwa Till in northern Illinois, and the Sky Pilot Till in northern Manitoba, that indicate deposition of these tills by subglacial deformation. These generally homogenous tills grade downward into more heterogeneous tills that incorporate underlying sediment into their matrix, indicating entrainment of older sediments by sediment deformation. Deformed sand inclusions within these tills imply deformation of the tills and inclusions prior to deposition. The Tiskilwa Till has relatively high fabric strength throughout its thickness, whereas fabric strength in the Sky Pilot Till generally increases up-section in 2 to 3 m thick increments. Fabric orientations in both tills rotate up-section, possibly due to changes in ice-flow direction associated with the thickening and thinning of ice, and changes in ice-flow divide location. In both the Tiskilwa and Sky Pilot Tills, the change in fabric orientation occurs over intervals of ~1 m, suggesting that the maximum depth of deformation was ≤1 m insofar as any greater depth of deformation would have reoriented till fabric during maximum ice extent and retreat. In the case of the Sky Pilot Till, the up-section increase in macrofabric strength indicates that strain increased up-section. These data suggest that these tills were deposited in a time transgressive manner as strain migrated upwards with the delivery of new till either released from the ice base or advected from up-ice.


1986 ◽  
Vol 32 (110) ◽  
pp. 95-100
Author(s):  
Karl N. Thome

AbstractMedial moraines and lineations on the surface of composite glaciers enable the detection of structural and hydrological features. A study of the composite glacier Breidamerkurjökull, south Iceland, indicates relationships between subglacial waterways, ice structure in the junction area, and development of the glacier terminus. First, rivers are situated in or near medial moraines because melt water percolates to the bed and moves from there with the subglacial rivers mainly in the direction of ice flow. Secondly, the contact between two feeder glaciers sometimes forms an angle at the glacier terminus. Then the meltwater river escaping from the contact, generally in a radial direction (away from the glacier front), during the retreat will be transferred to the front of the first receding glacier. The drainage of the contact zone then changes from a radial to a tangential direction, destroying the terminal moraines of the recession stages.Similar relations are found in relics of Pleistocene ice sheets, two examples of which are compared. The huge subglacial channel of the Münsterländer Kiessandzug-Esker below the ice sheet of the Saalian glaciation in the Münsterland, north-west Germany, was formed in the ice-flow direction. It therefore gives details of the morphology and of the great ice-dammed lake east of the Teutoburger Wald ridge. At the contact between the Norwegian and Baltic Sea glaciers, the terminus formed an angle during the maximum extent of the Weichselian glaciation in northern Jutland. During retreat, the Norwegian glacier receded first. The large melt-water river escaping from the contact between both glaciers had formed the huge Karup Sandur during the maximum, but now, during the recession, it changed to the front of the Norwegian ice, destroying the recession moraines there.


2020 ◽  
Vol 92 (2) ◽  
pp. 77-98
Author(s):  
Annika Katarina Åberg ◽  
◽  
Seija Kultti ◽  
Anu Kaakinen ◽  
Kari O. Eskola ◽  
...  

Three different till units separated by interstadial fluvial deposits were observed in the Sodankylä area in the River Kitinen valley, northern Finland. The interbedded glaciofluvial sediments and palaeosol were dated by OSL to the Early (79±12 to 67±13 ka) and Middle (41±9 ka) Weichselian. A LiDAR DEM, glacial lineations, the flow direction of till fabrics, esker chains and striations were applied to investigate the glacial flow patterns of the Sodankylä, Kittilä and Salla areas. The analysis revealed that the youngest movement of the Scandinavian Ice Sheet is not visible as DEM lineations within the studied areas. The modern morphology in Kittilä and Salla shows streamlined landforms of various dimensions mainly oriented from the NW and NNW, respectively, corresponding to the Early/Middle Weichselian ice-flow directions inferred from till fabrics. The Late Weichselian ice flow has produced an insignificant imprint on the landforms. This study suggests a northern location for the ice-divide zone during the Early/Middle Weichselian, and a more western–southwestern position during the Late Weichselian. The OSL ages of 14±3.3 ka from the aeolian deposits may indicate ice-free areas during the Bølling–Allerod warm period in the vicinity of the River Kitinen.


1986 ◽  
Vol 32 (110) ◽  
pp. 95-100 ◽  
Author(s):  
Karl N. Thome

Abstract Medial moraines and lineations on the surface of composite glaciers enable the detection of structural and hydrological features. A study of the composite glacier Breidamerkurjökull, south Iceland, indicates relationships between subglacial waterways, ice structure in the junction area, and development of the glacier terminus. First, rivers are situated in or near medial moraines because melt water percolates to the bed and moves from there with the subglacial rivers mainly in the direction of ice flow. Secondly, the contact between two feeder glaciers sometimes forms an angle at the glacier terminus. Then the meltwater river escaping from the contact, generally in a radial direction (away from the glacier front), during the retreat will be transferred to the front of the first receding glacier. The drainage of the contact zone then changes from a radial to a tangential direction, destroying the terminal moraines of the recession stages. Similar relations are found in relics of Pleistocene ice sheets, two examples of which are compared. The huge subglacial channel of the Münsterländer Kiessandzug-Esker below the ice sheet of the Saalian glaciation in the Münsterland, north-west Germany, was formed in the ice-flow direction. It therefore gives details of the morphology and of the great ice-dammed lake east of the Teutoburger Wald ridge. At the contact between the Norwegian and Baltic Sea glaciers, the terminus formed an angle during the maximum extent of the Weichselian glaciation in northern Jutland. During retreat, the Norwegian glacier receded first. The large melt-water river escaping from the contact between both glaciers had formed the huge Karup Sandur during the maximum, but now, during the recession, it changed to the front of the Norwegian ice, destroying the recession moraines there.


2021 ◽  
Author(s):  
Meryem Berrada ◽  
Richard Secco ◽  
Wenjun Yong

<p>Recent theoretical studies have tried to constrain Mercury’s internal structure and composition using thermal evolution models. The presence of a thermally stratified layer of Fe-S at the top of an Fe-Si core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (k<sub>el</sub>), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-8.5wt%Si at core conditions can be related to k<sub>el</sub> using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Unexpected behaviour at low temperatures between 6-8 GPa may indicate an undocumented phase transition. Measurements of ρ at melting seem to remain constant at 127 µΩ·cm from 10-24 GPa, on both the solid and liquid side of the melting boundary. The adiabatic heat flow at the core side of Mercury’s core-mantle boundary is estimated between 21.8-29.5 mWm<sup>-2</sup>, considerably higher than most models of an Fe-S or Fe-Si core yet similar to models of an Fe core. Comparing these results with thermal evolution models suggests that Mercury’s dynamo remained thermally driven up to 0.08-0.22 Gyr, at which point the core became sub-adiabatic and stimulated a change from dominant thermal convection to dominant chemical convection arising from the growth of an inner core. Simply considering the internal structure of Mercury, these results support the capture of Mercury into a 3:2 resonance orbit during the thermally driven era of the dynamo.</p>


2021 ◽  
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

<p>Over the three last decades, great efforts have been undertaken by the glaciological community to characterize the behaviour of ice streams and better constrain the dynamics of ice sheets. Studies of modern ice stream beds reveal crucial information on ice-meltwater-till-bedrock interactions, but are restricted to punctual observations limiting the understanding of ice stream dynamics as a whole. Consequently, theoretical ice stream landsystems derived from geomorphological and sedimentological observations were developed to provide wider constraints on those interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of subglacial periodic bedforms transverse to the ice flow direction – ribbed bedforms – remain unclear. The purpose of this study is (i) to explore the conditions under which these ribbed bedforms develop and (ii) to constrain their spatial organisation along ice stream beds.  </p><p>We performed physical experiments with silicon putty (to simulate the ice), water (to simulate the meltwater) and sand (to simulate a soft sedimentary bed) to model the dynamics of ice streams and produce analog subglacial landsystems. We compare the results of these experiments with the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. Based on this comparison, we can draw several conclusions regarding the significance of ribbed bedforms in ice stream contexts:</p><ul><li>Ribbed bedforms tend to form where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. Where the ribs initiate, we hypothesize that high driving stresses generate high basal shear stresses, accommodated through bed deformation of the active uppermost part of the bed.</li> <li>Ribbed bedforms can develop subglacially from a flat sediment surface beneath shear margins (i.e., lateral ribbed bedforms) and stagnant lobes (i.e., submarginal ribbed bedforms) of ice streams, while they do not develop beneath surging lobes.</li> <li>The orientation of ribbed bedforms reflects the local stress state along the ice-bed interface, with transverse bedforms formed by compression beneath ice lobes and oblique bedforms formed by transgression below lateral shear margins.</li> <li>The development of ribbed bedforms where the ice-bed interface is unlubricated reveals distinctive types of discontinuous basal drainage systems below shear and lobe margins: linked-cavities and efficient meltwater channels respectively.</li> </ul><p>Ribbed bedforms could thus constitute convenient geomorphic markers for the reconstruction of palaeo-ice stream margins, palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.</p>


2013 ◽  
Vol 54 (64) ◽  
pp. 105-114 ◽  
Author(s):  
S.R. Harland ◽  
J.-M. Kendall ◽  
G.W. Stuart ◽  
G.E. Lloyd ◽  
A.F. Baird ◽  
...  

Abstract Ice streams provide major drainage pathways for the Antarctic ice sheet. The stress distribution and style of flow in such ice streams produce elastic and rheological anisotropy, which informs ice-flow modelling as to how ice masses respond to external changes such as global warming. Here we analyse elastic anisotropy in Rutford Ice Stream, West Antarctica, using observations of shear-wave splitting from three-component icequake seismograms to characterize ice deformation via crystal-preferred orientation. Over 110 high-quality measurements are made on 41 events recorded at five stations deployed temporarily near the ice-stream grounding line. To the best of our knowledge, this is the first well-documented observation of shear-wave splitting from Antarctic icequakes. The magnitude of the splitting ranges from 2 to 80 ms and suggests a maximum of 6% shear-wave splitting. The fast shear-wave polarization direction is roughly perpendicular to ice-flow direction. We consider three mechanisms for ice anisotropy: a cluster model (vertical transversely isotropic (VTI) model); a girdle model (horizontal transversely isotropic (HTI) model); and crack-induced anisotropy (HTI model). Based on the data, we can rule out a VTI mechanism as the sole cause of anisotropy – an HTI component is needed, which may be due to ice crystal a-axis alignment in the direction of flow or the alignment of cracks or ice films in the plane perpendicular to the flow direction. The results suggest a combination of mechanisms may be at play, which represent vertical variations in the symmetry of ice crystal anisotropy in an ice stream, as predicted by ice fabric models.


Sign in / Sign up

Export Citation Format

Share Document