scholarly journals Sulphuric and Nitric Acid Concentrations and Spikes Along A 200 m Deep Ice Core at D 57 (Terre Adélie, Antarctica)

1985 ◽  
Vol 7 ◽  
pp. 70-75 ◽  
Author(s):  
Françoise Zanolini ◽  
Robert J. Delmas ◽  
Michel Legrand

D 57 station in Terre Adélie lies between the coast and the central Antarctic plateau. A 200 m ice core was recovered in summer 1980–81 at this location and analyzed by an electroconductometric method to detect exceptional acid levels linked to fallout from major volcanic eruptions. Several signals were indeed found. The corresponding ice-core sections were then analyzed for mineral acids (H2SO4 and HNO3). We detected several large volcanic events, in particular two eruptions identified as Tarabora (1815) and Galunggung (1822). The background concentration of sulphate was found to be relatively low (about 0.5 μeq 1−1). On the other hand nitrate values were higher than at coastal or central Antarctic locations (except for the Sauth Pole). Two spikes were found in the nitrate profile at depths of 140 and 148 m. It is thought that they could be either linked to the 1604 and 1572 supernovae Kepler and Tycho or correspond to epochs of particularly high solar activities. With the aid of these sulphate and nitrate exceptional events, a dating of the D 57 ice core can now be proposed which corresponds to a mean snow accumulation rate of 22 cm of ice equivalent per year over the last four centuries.

1985 ◽  
Vol 7 ◽  
pp. 70-75 ◽  
Author(s):  
Françoise Zanolini ◽  
Robert J. Delmas ◽  
Michel Legrand

D 57 station in Terre Adélie lies between the coast and the central Antarctic plateau. A 200 m ice core was recovered in summer 1980–81 at this location and analyzed by an electroconductometric method to detect exceptional acid levels linked to fallout from major volcanic eruptions. Several signals were indeed found. The corresponding ice-core sections were then analyzed for mineral acids (H2SO4 and HNO3). We detected several large volcanic events, in particular two eruptions identified as Tarabora (1815) and Galunggung (1822). The background concentration of sulphate was found to be relatively low (about 0.5 μeq 1−1). On the other hand nitrate values were higher than at coastal or central Antarctic locations (except for the Sauth Pole). Two spikes were found in the nitrate profile at depths of 140 and 148 m. It is thought that they could be either linked to the 1604 and 1572 supernovae Kepler and Tycho or correspond to epochs of particularly high solar activities. With the aid of these sulphate and nitrate exceptional events, a dating of the D 57 ice core can now be proposed which corresponds to a mean snow accumulation rate of 22 cm of ice equivalent per year over the last four centuries.


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


1982 ◽  
Vol 3 ◽  
pp. 354
Author(s):  
Michael M. Herron

Snow and ice-core samples from a number of sites in Antarctica and Greenland have been analyzed for the major anions Cl−, NO3 −, and SO4 2- by ion chromatography. Reproducibility on adjacent core or pit samples is ±10% at the 95% confidence level. Chloride is of marine origin except following some major volcanic eruptions. Chloride concentrations decrease exponentially with increasing site elevation with a scale height of about 1.5 km. For sites of comparable elevation, Antarctic Cl− concentrations are only slightly higher than in Greenland. Sulfate concentrations, corrected for the marine aerosol contribution, show an inverse dependence on snow accumulation rate. For sites of comparable accumulation rate, Greenland concentrations exceed those in Antarctica by a factor of 2 to 3. Nitrate concentrations also decrease with increasing accumulation rate and for comparable sites Greenland NO3 − concentrations are a factor of 2 higher than in Antarctica. There is no evidence of solar modulation or supernova perturbation of Greenland NO3 − concentrations. The Byrd deep core is shown to have distinct seasonal variations in Cl− and SO4 2- that may be used for dating. In addition, the Byrd core contains volcanic signals similar to those found in Greenland. Recent Greenland snow contains about 4 times as much SO4 2- and 2 to 3 times as much NO3 − as is found in older ice due to modern fossil fuel combustion.


1982 ◽  
Vol 3 ◽  
pp. 354-354
Author(s):  
Michael M. Herron

Snow and ice-core samples from a number of sites in Antarctica and Greenland have been analyzed for the major anions Cl−, NO3−, and SO42- by ion chromatography. Reproducibility on adjacent core or pit samples is ±10% at the 95% confidence level. Chloride is of marine origin except following some major volcanic eruptions. Chloride concentrations decrease exponentially with increasing site elevation with a scale height of about 1.5 km. For sites of comparable elevation, Antarctic Cl− concentrations are only slightly higher than in Greenland. Sulfate concentrations, corrected for the marine aerosol contribution, show an inverse dependence on snow accumulation rate. For sites of comparable accumulation rate, Greenland concentrations exceed those in Antarctica by a factor of 2 to 3. Nitrate concentrations also decrease with increasing accumulation rate and for comparable sites Greenland NO3− concentrations are a factor of 2 higher than in Antarctica. There is no evidence of solar modulation or supernova perturbation of Greenland NO3− concentrations. The Byrd deep core is shown to have distinct seasonal variations in Cl− and SO42- that may be used for dating. In addition, the Byrd core contains volcanic signals similar to those found in Greenland. Recent Greenland snow contains about 4 times as much SO42- and 2 to 3 times as much NO3− as is found in older ice due to modern fossil fuel combustion.


1999 ◽  
Vol 29 ◽  
pp. 106-112 ◽  
Author(s):  
B. Stenni ◽  
R. Caprioli ◽  
L. Cimino ◽  
C. Cremisini ◽  
O. Flora ◽  
...  

AbstractA 42.2 m firn core was collected at the Hercules Névé plateau (100 km inland and 2960 m a.s.L), northern Victoria Land, during the 1994-95 Italian Antarctic Expedition. Chemical (Cl–, NO3–, SO42–’; δ18O δ18O δ18O; m-2a-1) and isotope (5180) analyses were performed to evaluate the snow-accumulation rate at this site. Tritium measurements were performed in the upper part of the core to narrow down the dating of the core.High nssSO42- concentrations seem to be related to some explosive volcanic eruptions, such as Tambora (AD 1815) and the preceding event called "Unknown" (AD 1809), Coseguina (AD 1835), Makjan (AD 1861), Krakatoa (AD 1883) and Tarawera (AD 1886).A comparison between the seasonal variations observed in the isotope and chemical profiles was carried out in order to reduce the dating uncertainty, using the tritium and the volcanic markers as time constraints. A deposition period of 222 years was determined.The 3 year smoothed «5180 profile shows more negative values from the bottom of the core (dated AD 1770) throughout the 19th century, suggesting "cooler" conditions, in agreement with other East Antarctic ice-core records! Subsequently, a general increase in δ180-values is observed.The calculated average snow-accumulation rates between the above-mentioned time markers are 111-129 kg m-2a-1.


2012 ◽  
Vol 24 (3) ◽  
pp. 293-298 ◽  
Author(s):  
R.X. Li ◽  
C.D. Xiao ◽  
S.B. Sneed ◽  
M. Yan

AbstractDuring the 18th Chinese National Antarctic Research Expedition (CHINARE-18, 2001–2002), a 102.18 m ice core was drilled at site LGB69 (70°50′06.6′′S, 77°04′28.9′′E, 1850 m a.s.l., accumulation rate 70 cm yr-1), located to the east of the Lambert Glacier basin. This ice core has been analysed for chemical composition. Based on the high definition of seasonal variations of major ions, the ice core was dated to cover 293 years (ad 1708–2001), with errors at the bottom end within ± 2 years. The non-sea salt SO42- time series provides a proxy for historical volcanic eruptions preserved in the core, and high non-sea salt SO42- concentrations are well correlated to some documented volcanic events, such as Tambora (ad 1815), Cosiguina (ad 1835), Krakatoa (ad 1883) and Tarawera (ad 1886).


Of the commoner mineral acids the chemical changes of Nitric Acid, from their evident complexity, have formed the subject of numerous memoirs, while those of sulphuric acid, from their assumed simplicity, have been to some degree neglected; on the other hand, the physical properties of the latter have been studied with considerable elaboration, while those of the former have been passed over, doubtless on account of the corrosive nature of the acid and the difficulty of preparing and preserving it in a reasonable degree of purity. Further, with certain exceptions, the alterations in physical properties induced by the products of reduction, be they nitrogen peroxide or nitrous acid, either singly or conjointly, have attracted but little attention, though it is a common matter of observation that the current intensity of a Grove’s or other cell containing nitric acid remains constant, even though the fuming acid, originally colourless or red, has become of a deep green tint. It is more than probable that of the factors of Ohm’s law, both the E. M. F. and internal resistance are continually varying. At the earliest stages of the enquiry it was found that the passage of a few bubbles of nitric oxide gas into a considerable volume of nitric acid produced an alteration of one percent, in the resistance, and the same result could be effected to a less degree by exposure to sunlight, and to a still less degree by exposure to artificial illumination. Therefore, we determined to investigate the alterations of conductivity produced by changes of concentration and temperature in samples of acid purified with necessary precautions, more especially as former workers upon the subject have either used samples of acid confessedly impure, or have been silent as to any method of purification, or have adopted no special care in dealing with a substance so susceptible of polarisation.


2015 ◽  
Vol 11 (2) ◽  
pp. 217-226 ◽  
Author(s):  
A. Tsushima ◽  
S. Matoba ◽  
T. Shiraiwa ◽  
S. Okamoto ◽  
H. Sasaki ◽  
...  

Abstract. A 180.17 m ice core was drilled at Aurora Peak in the central part of the Alaska Range, Alaska, in 2008 to allow reconstruction of centennial-scale climate change in the northern North Pacific. The 10 m depth temperature in the borehole was −2.2 °C, which corresponded to the annual mean air temperature at the drilling site. In this ice core, there were many melt–refreeze layers due to high temperature and/or strong insolation during summer seasons. We analyzed stable hydrogen isotopes (δD) and chemical species in the ice core. The ice core age was determined by annual counts of δD and seasonal cycles of Na+, and we used reference horizons of tritium peaks in 1963 and 1964, major volcanic eruptions of Mount Spurr in 1992 and Mount Katmai in 1912, and a large forest fire in 2004 as age controls. Here, we show that the chronology of the Aurora Peak ice core from 95.61 m to the top corresponds to the period from 1900 to the summer season of 2008, with a dating error of ± 3 years. We estimated that the mean accumulation rate from 1997 to 2007 (except for 2004) was 2.04 m w.eq. yr-1. Our results suggest that temporal variations in δD and annual accumulation rates are strongly related to shifts in the Pacific Decadal Oscillation index (PDOI). The remarkable increase in annual precipitation since the 1970s has likely been the result of enhanced storm activity associated with shifts in the PDOI during winter in the Gulf of Alaska.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


2004 ◽  
Vol 39 ◽  
pp. 545-556 ◽  
Author(s):  
Daniel Dixon ◽  
Paul A. Mayewski ◽  
Susan Kaspari ◽  
Sharon Sneed ◽  
Mike Handley

AbstractSixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42– and excess (xs) SO42– is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000 m. Our xsSO42– records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42– concentrations but do reveal that a major climate transition takes place over West Antarctica at ∼1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO42– records from sites located above 1000m elevation but do not appear in the residual records from sites located below 1000 m.


Sign in / Sign up

Export Citation Format

Share Document