scholarly journals Ice-Core Evidence For Weddell Sea Ice Extent During The Past 200 Years

1990 ◽  
Vol 14 ◽  
pp. 350-350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle.Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.

1990 ◽  
Vol 14 ◽  
pp. 350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle. Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


1988 ◽  
Vol 11 ◽  
pp. 204-205 ◽  
Author(s):  
Robert Mulvaney ◽  
David A. Peel

In January 1986, a 133 m ice core, with an estimated age at the bottom of 300-350 years, was collected (using an electromechanical drill) on Dolleman Island (70° 35.2′S, 60°55.5′ W; 398 ma.s.l.; 10 m temperature −16.75°C). The site lies on the east coast of the Antarctic Peninsula and has a continental-type climate dominated by perennial sea ice in the Weddell Sea. The core is being analysed for a range of chemical impurities, in order to assess their potential as indicators of past climate. High-resolution (10-15 samples a−1) continuous profiles of the anionic species Cl−1, NO3 − and SO4 2−, together with the cation Na+, have been measured on a section of the core from 26 to 71 m depth. The core has previously been dated between 0 and 32 m depth using the δ18O profile (Peel and others 1988). Lack of δ18O data for the section 32-71 m forced us to seek an alternative method of dating. Biogenic outgassing of sulphurous gases from the ocean and subsequent photochemical oxidation contribute an excess of sulphate over that derived from the marine aerosol. We show that excess sulphate, calculated as (concentrations in Eq. 1−1 and assuming that all measured Na+ is derived from sea salt), is highly seasonal in character, and annual horizons are well preserved over the whole of the core. This enabled us to determine the chronology to 71 m depth, and date the bottom of this section as 1844 ± 5 years. Cl− is derived mainly from sea salt. Its profile in the core is also seasonal in character, with peaks that tend to occur in late summer, reflecting the period of minimum sea-ice extent in the Weddell Sea, and therefore maximum source area for the uptake of sea salt. From instrumental meteorological records, Limbert (1974) showed that there were three extended periods of warm or cold weather in the Antarctic Peninsula between 1903 and 1944. During the two 4 year cold periods, when the summer break-up of sea ice in the Weddell Sea is likely to have been reduced, we found that the annual flux of Cl− to the Dolleman Island snow-pack was lower than the average. Conversely, the 3 year warm period showed a peak in the values of annual flux of Cl−. We therefore propose that Cl− can be used as a palaeoclimatic indicator for sea-ice extent. Extending our chloride data into the latter half of the nineteenth century (before the earliest continuous instrumental records for the Antarctic), we found three distinct peaks in the values of annual flux of Cl−. We suggest that the period 1850-60 was marked by a decrease in Weddell Sea ice extent (due perhaps to a warm period), followed by an extended period of increased sea ice. There were then two periods of much-reduced sea ice during (approximately) 1885-1890 and 1895-1900, with an intervening period of greatly increased ice coverage. These events are in good agreement with the warm and cold periods which Aristarain and others (1986) identified in the deuterium profile from James Ross Island.


1988 ◽  
Vol 11 ◽  
pp. 204-205
Author(s):  
Robert Mulvaney ◽  
David A. Peel

In January 1986, a 133 m ice core, with an estimated age at the bottom of 300-350 years, was collected (using an electromechanical drill) on Dolleman Island (70° 35.2′S, 60°55.5′ W; 398 ma.s.l.; 10 m temperature −16.75°C). The site lies on the east coast of the Antarctic Peninsula and has a continental-type climate dominated by perennial sea ice in the Weddell Sea. The core is being analysed for a range of chemical impurities, in order to assess their potential as indicators of past climate.High-resolution (10-15 samples a−1) continuous profiles of the anionic species Cl−1, NO3− and SO42−, together with the cation Na+, have been measured on a section of the core from 26 to 71 m depth. The core has previously been dated between 0 and 32 m depth using the δ18O profile (Peel and others 1988). Lack of δ18O data for the section 32-71 m forced us to seek an alternative method of dating.Biogenic outgassing of sulphurous gases from the ocean and subsequent photochemical oxidation contribute an excess of sulphate over that derived from the marine aerosol. We show that excess sulphate, calculated as(concentrations in Eq. 1−1 and assuming that all measured Na+ is derived from sea salt), is highly seasonal in character, and annual horizons are well preserved over the whole of the core. This enabled us to determine the chronology to 71 m depth, and date the bottom of this section as 1844 ± 5 years.Cl− is derived mainly from sea salt. Its profile in the core is also seasonal in character, with peaks that tend to occur in late summer, reflecting the period of minimum sea-ice extent in the Weddell Sea, and therefore maximum source area for the uptake of sea salt. From instrumental meteorological records, Limbert (1974) showed that there were three extended periods of warm or cold weather in the Antarctic Peninsula between 1903 and 1944. During the two 4 year cold periods, when the summer break-up of sea ice in the Weddell Sea is likely to have been reduced, we found that the annual flux of Cl− to the Dolleman Island snow-pack was lower than the average. Conversely, the 3 year warm period showed a peak in the values of annual flux of Cl−. We therefore propose that Cl− can be used as a palaeoclimatic indicator for sea-ice extent.Extending our chloride data into the latter half of the nineteenth century (before the earliest continuous instrumental records for the Antarctic), we found three distinct peaks in the values of annual flux of Cl−. We suggest that the period 1850-60 was marked by a decrease in Weddell Sea ice extent (due perhaps to a warm period), followed by an extended period of increased sea ice. There were then two periods of much-reduced sea ice during (approximately) 1885-1890 and 1895-1900, with an intervening period of greatly increased ice coverage. These events are in good agreement with the warm and cold periods which Aristarain and others (1986) identified in the deuterium profile from James Ross Island.


Author(s):  
Lars-Otto Reiersen ◽  
Robert W. Corell

This overview of climate observation, monitoring, and research for the Arctic region outlines the key elements essential to an enhanced understanding of the unprecedented climate change in the region and its global influences. The first recorded observation of sea ice extent around Svalbard date back to the whaling activities around 1600. Over the following 300 years there are periodic and inadequate observations of climate and sea ice from explorers seeking a northern sea route for sailing to Asia or reaching the North Pole. Around 1900 there were few fixed meteorological stations in the circumpolar North. During the Second World War and the following Cold War, the observation network increased significantly due to military interest. Since the 1970s the use of satellites has improved the climate and meteorological observations of Arctic areas, and advancements in marine observations (beneath the sea surface and within oceanic sediments) have contributed to a much improved network of climate and meteorological variables. Climate change in the Arctic and its possible effects within the Arctic and on global climate such as extreme weather and sea level rise were first reported in the ACIA 2005 report. Since then there has been a lot of climate-related assessments based on data from the Arctic and ongoing processes within the Arctic that are linked to global systems.


2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.


2016 ◽  
Vol 121 (23) ◽  
pp. 13,886-13,900 ◽  
Author(s):  
Stacy E. Porter ◽  
Claire L. Parkinson ◽  
Ellen Mosley-Thompson

2020 ◽  
Vol 12 (18) ◽  
pp. 2880
Author(s):  
Shuang Liang ◽  
Jiangyuan Zeng ◽  
Zhen Li ◽  
Dejing Qiao ◽  
Ping Zhang ◽  
...  

Sea ice concentration (SIC) plays a significant role in climate change research and ship’s navigation in polar regions. Satellite-based SIC products have become increasingly abundant in recent years; however, the uncertainty of these products still exists and needs to be further investigated. To comprehensively evaluate the consistency of the SIC derived from different SIC algorithms in long time series and the whole polar regions, we compared four passive microwave (PM) satellite SIC products with the ERA-Interim sea ice fraction dataset during the period of 2015–2018. The PM SIC products include the SSMIS/ASI, AMSR2/BT, the Chinese FY3B/NT2, and FY3C/NT2. The results show that the remotely sensed SIC products derived from different SIC algorithms are generally in good consistency. The spatial and temporal distribution of discrepancy among satellite SIC products for both Arctic and Antarctic regions are also observed. The most noticeable difference for all the four SIC products mostly occurs in summer and at the marginal ice zone, indicating that large uncertainties exist in satellite SIC products in such period and areas. The SSMIS/ASI and AMSR2/BT show relatively better consistency with ERA-Interim in the Arctic and Antarctic, respectively, but they exhibit opposite bias (dry/wet) relative to the ERA-Interim data. The sea ice extent (SIE) and sea ice area (SIA) derived from PM and ERA-Interim SIC were also compared. It is found that the difference of PM SIE and SIA varies seasonally, which is in line with that of PM SIC, and the discrepancy between PM and ERA-Interim data is larger in Arctic than in Antarctic. We also noticed that different algorithms have different performances in different regions and periods; therefore, the hybrid of multiple algorithms is a promising way to improve the accuracy of SIC retrievals. It is expected that our findings can contribute to improving the satellite SIC algorithms and thus promote the application of these useful products in global climate change studies.


2021 ◽  
Vol 15 (9) ◽  
pp. 4165-4178
Author(s):  
Stefanie Arndt ◽  
Christian Haas ◽  
Hanno Meyer ◽  
Ilka Peeken ◽  
Thomas Krumpen

Abstract. Recent low summer sea ice extent in the Weddell Sea raises questions about the contributions of dynamic and thermodynamic atmospheric and oceanic energy fluxes. The roles of snow, superimposed ice, and snow ice are particularly intriguing, as they are sensitive indicators of changes in atmospheric forcing and as they could trigger snow–albedo feedbacks that could accelerate ice melt. Here we present snow depth data and ice core observations of superimposed ice and snow ice collected in the northwestern Weddell Sea in late austral summer 2019, supplemented by airborne ice thickness measurements. Texture, salinity, and oxygen isotope analyses showed mean thicknesses of superimposed and snow ice of 0.11±0.11 and 0.22±0.22 m, respectively, or 3 % to 54 % of total ice thickness. Mean snow depths ranged between 0.46±0.29 m in the south to 0.05±0.06 m in the north, with mean and modal total ice thicknesses of 4.12±1.87 to 1.62±1.05 m and 3.9 to 0.9 m, respectively. These snow and ice properties are similar to results from previous studies, suggesting that the ice's summer surface energy balance and related seasonal transition of snow properties have changed little in past decades. This is supported by our additional analyses of the summer energy balance using atmospheric reanalysis data and by melt onset observations from satellite scatterometry showing few recent changes.


2021 ◽  
Author(s):  
Stefanie Arndt ◽  
Christian Haas ◽  
Hanno Meyer ◽  
Ilka Peeken ◽  
Thomas Krumpen

Abstract. Recent low summer sea ice extent in the Weddell Sea raises questions about the contributions of dynamic and thermodynamic atmospheric and oceanic energy fluxes. The roles of snow, superimposed ice, and snow ice are particularly intriguing, as they are sensitive indicators for changes in atmospheric forcing, and as they could trigger snow-albedo feedbacks that could accelerate ice melt. Here we present snow depth data and ice core observations of superimposed ice and snow ice collected in the northwestern Weddell Sea in late austral summer of 2019, supplemented by airborne ice thickness measurements. Texture, salinity, and oxygen isotope analyses showed mean thicknesses of superimposed and snow ice of 0.11 ± 0.11 m and 0.22 ± 0.22 m, respectively, or 3 to 54 % of total ice thickness. Mean snow depths ranged between 0.46 ± 0.29 m in the south to 0.05 ± 0.06 m in the north, with mean and modal, total ice thicknesses between 4.12 ± 1.87 m to 1.62 ± 1.05 m, and 3.9 m to 0.9 m, respectively. These snow and ice properties are similar to results from previous studies, suggesting that the ice’s summer surface energy balance and related seasonal transition of snow properties have changed little in past decades. This is supported by our additional analyses of the summer energy balance using atmospheric reanalysis data, and melt onset observations from satellite scatterometry showing little recent changes.


2004 ◽  
Vol 39 ◽  
pp. 540-544 ◽  
Author(s):  
Barbara T. Smith ◽  
Tas D. Van Ommen ◽  
Mark A. J. Curran

AbstractMethanesulphonic acid (MSA) is an important trace-ion constituent in ice cores, with connections to biological activity and sea-ice distribution. Post-depositional movement of MSA has been documented in firn, and this study investigates movement in solid ice by measuring variations in MSA distribution across several horizontal sections from an ice core after 14.5 years storage. The core used is from below the bubble close-off depth at Dome Summit South, Law Dome, East Antarctica. MSA concentration was studied at 3 and 0.5 cm resolution across the core widths. Its distribution was uniform through the core centres, but the outer 3 cm showed gradients in concentrations down to less than half of the central value at the core edge. This effect is consistent with diffusion to the surrounding air during its 14.5 year storage. The diffusion coefficient is calculated to be 2 ×10–13 m2 s–1, and the implications for the diffusion mechanism are discussed.


Sign in / Sign up

Export Citation Format

Share Document