scholarly journals A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica

2019 ◽  
Vol 15 (2) ◽  
pp. 751-779 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved chronology and snow accumulation history for the Roosevelt Island Climate Evolution (RICE) ice core, Ross Ice Shelf, West Antarctica. The core adds information on past accumulation changes in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles in high-resolution impurity records, and it constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanic and methane matching to the WD2014 chronology from the WAIS Divide ice core shows that the two timescales are in excellent agreement. In a companion paper, gas matching to WAIS Divide is used to extend the timescale for the deeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snow accumulation at Roosevelt Island. The accumulation history shows that Roosevelt Island experienced slightly increasing accumulation rates between 700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 m water equivalent (w.e.) per year. Since 1300 CE, trends in the accumulation rate have been consistently negative, with an acceleration in the rate of decline after the mid-17th century. The current accumulation rate at Roosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to 0.8 mm yr−2. The decline observed since the mid-1960s is 8 times faster than the long-term decreasing trend taking place over the previous centuries, with decadal mean accumulation rates consistently being below average. Previous research has shown a strong link between Roosevelt Island accumulation rates and the location and intensity of the Amundsen Sea Low, which has a significant impact on regional sea-ice extent. The decrease in accumulation rates at Roosevelt Island may therefore be explained in terms of a recent strengthening of the ASL and the expansion of sea ice in the eastern Ross Sea. The start of the rapid decrease in RICE accumulation rates observed in 1965 CE may thus mark the onset of significant increases in regional sea-ice extent.

2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


2016 ◽  
Vol 97 (1) ◽  
pp. 111-121 ◽  
Author(s):  
M. N. Raphael ◽  
G. J. Marshall ◽  
J. Turner ◽  
R. L. Fogt ◽  
D. Schneider ◽  
...  

Abstract The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases.


2017 ◽  
Author(s):  
Nancy A. N. Bertler ◽  
Howard Conway ◽  
Dorthe Dahl-Jensen ◽  
Daniel B. Emanuelsson ◽  
Mai Winstrup ◽  
...  

Abstract. High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979–2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings.


1990 ◽  
Vol 14 ◽  
pp. 350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle. Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


2018 ◽  
Vol 14 (2) ◽  
pp. 193-214 ◽  
Author(s):  
Nancy A. N. Bertler ◽  
Howard Conway ◽  
Dorthe Dahl-Jensen ◽  
Daniel B. Emanuelsson ◽  
Mai Winstrup ◽  
...  

Abstract. High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.


2018 ◽  
Author(s):  
Kirstin Hoffmann ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Elizabeth R. Thomas ◽  
Marcelo Aliaga ◽  
...  

Abstract. West Antarctica is well-known as a region that is highly susceptible to atmospheric and oceanic warming. However, due to the lack of long–term and in–situ meteorological observations little is known about the magnitude of the warming and the meteorological conditions in the region at the intersection between the Antarctic Peninsula (AP), the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet (EAIS). Here we present new stable water isotope data (δ18O, δD, d excess) and accumulation rates from firn cores in the Union Glacier (UG) region, located in the Ellsworth Mountains at the northern edge of the WAIS. The firn core stable oxygen isotope composition reveals no statistically significant trend for the period 1980–2014 suggesting that regional changes in near-surface air temperature have been small during the last 35 years. As for stable oxygen isotopes no statistically significant trend has been found for the d excess suggesting overall little change in the main moisture sources and the origin of precipitating air masses for the UG region at least since 1980. Backward trajectory modelling revealed the Weddell Sea sector to be the likely main moisture source region for the study site throughout the year. We found that mean annual δ–values in the UG region are correlated with sea ice concentrations in the northern Weddell Sea, but are not strongly influenced by large-scale modes of climate variability such as the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). Only mean annual d excess values are weakly positively correlated with the SAM. On average snow accumulation in the UG region amounts to about 0.25 m w.eq. a−1 between 1980 and 2014. Mean annual snow accumulation has slightly decreased since 1980 (−0.001 m w.eq. a−1, p–value = 0.006). However, snow accumulation at UG is neither correlated with sea ice nor with SAM and ENSO confirming that the large increases in snow accumulation observed on the AP and in other coastal regions of Antarctica have not extended inland to the Ellsworth Mountains. We conclude that the UG region – located in the transition zone between the AP, the WAIS and the EAIS – is exhibiting rather East than West Antarctic climate characteristics.


2020 ◽  
Vol 14 (3) ◽  
pp. 881-904
Author(s):  
Kirstin Hoffmann ◽  
Francisco Fernandoy ◽  
Hanno Meyer ◽  
Elizabeth R. Thomas ◽  
Marcelo Aliaga ◽  
...  

Abstract. Antarctica is well known to be highly susceptible to atmospheric and oceanic warming. However, due to the lack of long-term and in situ meteorological observations, little is known about the magnitude of the warming and the meteorological conditions in the intersection region between the Antarctic Peninsula (AP), the West Antarctic Ice Sheet (WAIS) and the East Antarctic Ice Sheet (EAIS). Here we present new stable water isotope data (δ18O, δD, d excess) and accumulation rates from firn cores in the Union Glacier (UG) region, located in the Ellsworth Mountains at the northern edge of the WAIS. The firn core stable oxygen isotopes and the d excess exhibit no statistically significant trend for the period 1980–2014, suggesting that regional changes in near-surface air temperature and moisture source variability have been small during the last 35 years. Backward trajectory modelling revealed the Weddell Sea sector, Coats Land and Dronning Maud Land (DML) to be the main moisture source regions for the study site throughout the year. We found that mean annual δ18O (δD) values in the UG region are negatively correlated with sea ice concentrations (SICs) in the northern Weddell Sea but not influenced by large-scale modes of climate variability such as the Southern Annular Mode (SAM) and the El Niño–Southern Oscillation (ENSO). Only mean annual d-excess values show a weak positive correlation with the SAM. On average annual snow accumulation in the UG region amounts to 0.245 m w.e. a−1 in 1980–2014 and has slightly decreased during this period. It is only weakly related to sea ice conditions in the Weddell Sea sector and not correlated with SAM and ENSO. We conclude that neither the rapid warming nor the large increases in snow accumulation observed on the AP and in West Antarctica during the last decades have extended inland to the Ellsworth Mountains. Hence, the UG region, although located at the northern edge of the WAIS and relatively close to the AP, exhibits rather stable climate characteristics similar to those observed in East Antarctica.


1988 ◽  
Vol 10 ◽  
pp. 43-47 ◽  
Author(s):  
W. Graf ◽  
O. Reinwarth ◽  
H. Moser ◽  
W. Stichler

A 100 m ice core from the Ronne Ice Shelf, drilled during the 1983-84 field season, was dated by isotopic stratigraphy, using the well-known seasonal variation in the 18O content in firn and ice; the layers at a depth of 89 m are probably 400 years old. Layer thicknesses deduced from the 18O profile indicate short-term variations of the snow-accumulation rate over the last 400 years. The area of deposition of the material recovered with the core is estimated by a two-dimensional flow model and by the 18O content of the core, which decreases from –27.5‰ in the upper part of the core to –32.0‰ at 89 m depth.


1988 ◽  
Vol 11 ◽  
pp. 204-205 ◽  
Author(s):  
Robert Mulvaney ◽  
David A. Peel

In January 1986, a 133 m ice core, with an estimated age at the bottom of 300-350 years, was collected (using an electromechanical drill) on Dolleman Island (70° 35.2′S, 60°55.5′ W; 398 ma.s.l.; 10 m temperature −16.75°C). The site lies on the east coast of the Antarctic Peninsula and has a continental-type climate dominated by perennial sea ice in the Weddell Sea. The core is being analysed for a range of chemical impurities, in order to assess their potential as indicators of past climate. High-resolution (10-15 samples a−1) continuous profiles of the anionic species Cl−1, NO3 − and SO4 2−, together with the cation Na+, have been measured on a section of the core from 26 to 71 m depth. The core has previously been dated between 0 and 32 m depth using the δ18O profile (Peel and others 1988). Lack of δ18O data for the section 32-71 m forced us to seek an alternative method of dating. Biogenic outgassing of sulphurous gases from the ocean and subsequent photochemical oxidation contribute an excess of sulphate over that derived from the marine aerosol. We show that excess sulphate, calculated as (concentrations in Eq. 1−1 and assuming that all measured Na+ is derived from sea salt), is highly seasonal in character, and annual horizons are well preserved over the whole of the core. This enabled us to determine the chronology to 71 m depth, and date the bottom of this section as 1844 ± 5 years. Cl− is derived mainly from sea salt. Its profile in the core is also seasonal in character, with peaks that tend to occur in late summer, reflecting the period of minimum sea-ice extent in the Weddell Sea, and therefore maximum source area for the uptake of sea salt. From instrumental meteorological records, Limbert (1974) showed that there were three extended periods of warm or cold weather in the Antarctic Peninsula between 1903 and 1944. During the two 4 year cold periods, when the summer break-up of sea ice in the Weddell Sea is likely to have been reduced, we found that the annual flux of Cl− to the Dolleman Island snow-pack was lower than the average. Conversely, the 3 year warm period showed a peak in the values of annual flux of Cl−. We therefore propose that Cl− can be used as a palaeoclimatic indicator for sea-ice extent. Extending our chloride data into the latter half of the nineteenth century (before the earliest continuous instrumental records for the Antarctic), we found three distinct peaks in the values of annual flux of Cl−. We suggest that the period 1850-60 was marked by a decrease in Weddell Sea ice extent (due perhaps to a warm period), followed by an extended period of increased sea ice. There were then two periods of much-reduced sea ice during (approximately) 1885-1890 and 1895-1900, with an intervening period of greatly increased ice coverage. These events are in good agreement with the warm and cold periods which Aristarain and others (1986) identified in the deuterium profile from James Ross Island.


1990 ◽  
Vol 14 ◽  
pp. 350-350
Author(s):  
R. Mulvaney ◽  
A.P. Reid ◽  
D A. Peel

A continuous, detailed, 200-years record of the anionic species, chloride, nitrate and sulphate, has been measured on an ice core from Dolleman Island (70°35.2′ S, 60°55.5′ W), Antarctic Peninsula. The site lies on the east coast of the Peninsula, and the chemistry of the core is dominated by the changing pattern of sea-ice distribution and storm activity in the Wed dell Sea. Strong annual cycles in chloride and non sea salt sulphate reflect the dominance of the seasonal cycle in sea-ice distribution in the Weddell Sea, observed in time series derived from satellite imagery since the early 1970s. However, in the case of chloride there is also an exceptionally strong interannual variability, which in many parts of the core dominates the seasonal cycle.Secular variations in the sea-ice extent appear to have a strong influence on the climate of the region and may play a major role in determining how long-term climate change in the Antarctic Peninsula relates to global climate change. The paper examines documented evidence for sea-ice extent in the Weddell Sea sector, and evaluates the usefulness of ice-core data for reconstructing this parameter in the earlier period.


Sign in / Sign up

Export Citation Format

Share Document