scholarly journals Nobiletin represses change in the levels of blood coagulation markers in the LPS-induced rat DIC model

2020 ◽  
Vol 10 (9) ◽  
pp. 397
Author(s):  
Kimihiko Takada ◽  
Mayuko Takano ◽  
Aiko Kunii ◽  
Kei Harayama ◽  
Akira Ito ◽  
...  

Background: Nobiletin is contained in Shiikuwasa fruit, a popular citrus fruit from Okinawa Prefecture in Japan. Nobiletin reportedly acts as a strong antioxidant, an anti-inflammatory agent, and an anti-cancer agent, and it suppresses the expression of TF which triggers blood coagulation. However, in vivo verification of in vitro reports is necessary. This study used a rat model of LPS-induced microthrombosis based on the in vivo studies as previously reported. Sustained intravenous injection of LPS changed all blood coagulation indicators in the direction of thrombus formation. The aim of this study was to determine if intake of nobiletin could suppress DIC-like symptoms.Methods: Experimental SD rats were fully anesthetized and fixed to an operating table. Either LPS alone or nobiletin (50 mg/kg) plus LPS was given to rats to investigate the repressive effects of nobiletin on the expression of blood coagulation factors.Results: After 4 h of LPS infusion (12.5 mg/kg/h, i.v.), PLT counts and Fbg levels in rat plasma decreased by 80% and 74%, respectively. PT and APTT were extended by 180% and 256%, respectively. TF activity and PAI-1 antigen levels were remarkably increased (54- and 86-fold, respectively vs. control). Pretreatment on nobiletin (50 mg/kg, p.o.) reduced or suppressed fluctuations in blood coagulation indices caused by LPS. TF activity was repressed almost completely by nobiletin pretreatment. After 4 h, PAI-1 antigen levels in nobiletin-treated animals were repressed 82.6% compared to LPS-treated rats. Nobiletin repressed LPS-induced changes in TF and PAI-1 more effectively than other parameters. Further, nobiletin repressed fibrin thrombi  formation in the renal glomeruli induced by LPS treatment.Conclusions: Nobiletin was found to reduce LPS-induced DIC-like symptoms in rats. In the fluctuations of blood indices related to the coagulation cascade, nobiletin suppressed the LPS-induced expression of PAI-1 and TF more effectively than other indices. The binding sites of transcription factors that are activated by LPS-induced signals reside in the promoter areas of TF and PAI-1 gene sequences. Thus, the suppression of TF and PAI-1 expression by nobiletin appears similar to mechanisms previously evaluated during in vitro experiments. Importantly, nobiletin repressed fibrin deposition in the renal glomeruli induced by LPS treatment and improved overall health. Nobiletin may function as an anti-thrombogenic agent when ingested daily. Keywords: nobiletin; LPS; DIC model; blood coagulation; anti-thrombogenic

Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2133-2143 ◽  
Author(s):  
Roxane Darbousset ◽  
Grace M. Thomas ◽  
Soraya Mezouar ◽  
Corinne Frère ◽  
Rénaté Bonier ◽  
...  

AbstractFor a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1–ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.


1981 ◽  
Author(s):  
E Szwarcer ◽  
R Giuliani ◽  
E Martinez Aquino

For studying heparin effect on blood coagulation and on inhibitors, the drug was added at increasing amounts to a normal platelet poor plasma (PPP), and to plasmas of patients with variable amounts of clotting factors (cirrhotic, pregnant, etc) -IN VITRO STUDIES-, and infused to the same individuals -IN VIVO STUDIES-. Modifications on two clotting assays (KCCT-TT) were compared to heparin potentiating effect on AntiXa (Denson & Bonnar tech).When studied IN VITRO, the sensibility of KCCT, TT, and AntiXa techniques for heparin measurement was similar. IN VIVO, an apparently greater sensibility using AntiXa technique was observed.For determining if this phenomena was related to a specific enhanced potentiating effect of the inhibitor against Xa, exerted by heparin IN VIVO, experiences were repeated IN VITRO and IN VIVO, measuring heparin effect on KCCT, TT, and on the inhibitor, studied against Xa and thrombin. A personal technique was used for the measurement of Antithrombin III heparin potentiating effect, using diluted platelet poor test plasma, heated (56°C 15’) and incubated with thrombin during a fixed time, and reading residual thrombin on citrated human PPP. IN VITRO, all techniques were similar in their ability to show heparin presence.IN VIVO, the potentiating effect of heparin on the inhibitor, measured against Xa or thrombin, was greater than the changes obtained on KCCT or TT.So, AntiXa-Antithrombin III techniques seem to be more sensitive for heparin measurement IN VIVO.This “dissociation” of results in between the potentiating effect on the inhibitor, that is not simultaneously exerted on global coagulation, is interpreted as a heparin pro-coagulant effect, exerted by the drug IN VIVO.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


2020 ◽  
Vol 39 (3) ◽  
pp. 207-217
Author(s):  
F. Poitout-Belissent ◽  
D. Culang ◽  
D. Poulin ◽  
R. Samadfan ◽  
S. Cotton ◽  
...  

Thrombin generation assay (TGA) is a sensitive method for the assessment of the global clotting potential of plasma. This kinetic assay can detect both hypocoagulable and hypercoagulable conditions: delayed or reduced thrombin generation leading to a prolonged clotting time, or induced thrombin activity, shifting the coagulation cascade toward thrombosis. The purpose of this study is to qualify the TGA in nonhuman primates (NHP) and rats for its use during nonclinical in vivo and in vitro studies. Blood was drawn from nonanesthetized animals, and platelet-poor plasma was obtained after double centrifugation; coefficients of variation were <10% for all derived parameters of thrombin generation assessed with 5 pM of tissue factor. Thrombin generation was evaluated in vitro in rat and NHP plasmas with ascending doses of unfractionated heparin (UFH), recombinant tissue factor, and anticoagulant compounds. Thrombin generation was decreased with UFH and anticoagulant compounds, but was increased in the presence of tissue factor, in a dose-dependent manner. In a rat model of inflammation, animals were administered a low dose of lipopolysaccharides. Thrombin generation measurements were decreased 3 hours post-LPS administration with a nadir at 24 hours, while thrombin–antithrombin complexes reached a peak at 8 hours, supporting an earlier production of thrombin. In conclusion, these data demonstrated that TGA can be performed in vitro for screening of compounds expected to have effects on coagulation cascade, and thrombin generation can be measured at interim time points during nonclinical in vivo studies in rats and NHP.


1993 ◽  
Vol 265 (2) ◽  
pp. L121-L126
Author(s):  
J. E. White ◽  
M. P. Ryan ◽  
M. F. Tsan ◽  
P. J. Higgins

Hyperoxic stress alters expression of genes involved in extracellular matrix (ECM) remodeling. To identify novel ECM-associated gene products positively regulated by hyperoxia, rat kidney cells were exposed to 95% O2, and the complement of [35S]methionine-labeled, saponin-resistant, ECM-associated proteins was compared with normoxic controls. O2-stressed cells accumulated significantly greater ECM levels (approximately 3- to 4-fold that of control cells) of a 52-kDa glycoprotein (p52), recently identified as the matrix form of plasminogen activator inhibitor type 1 (PAI-1) (P.J. Higgins, P. Chaudhari, and M.P. Ryan. Biochem. J. 273: 651-658, 1991; P. J. Higgins, M. P. Ryan, R. Zeheb, T. D. Gelehrter, P. Chaudhari. J. Cell. Physiol. 143:321-329, 1990), which peaked at 48 h of exposure. Hyperoxia-associated increases in ECM p52(PAI-1) content reflected parallel elevations in p52(PAI-1) mRNA abundance. Similar results were obtained using secondary cultures of rat pulmonary fibroblasts. This 48-h period of maximal hyperoxia-induced p52(PAI-1) expression in vitro was used to design subsequent in vivo studies. Adult rats were exposed to 99% O2 for 24–50 h, and RNA was extracted from the pulmonary tissue of stressed and control animals. A 5- to 8-fold and 6- to 15-fold increase in lung p52(PAI-1) mRNA content was evident in hyperoxia-treated rats at 24 and 50 h, respectively. All of this increase occurred in the defined 3.2-kb species of rat p52(PAI-1) mRNA. Actin mRNA levels increased three- to sevenfold as a function of hyperoxic stress, whereas catalase and glyceraldehyde-3-phosphate dehydrogenase mRNA abundance was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 206 (11) ◽  
pp. 2381-2395 ◽  
Author(s):  
Yves Decrem ◽  
Géraldine Rath ◽  
Virginie Blasioli ◽  
Philippe Cauchie ◽  
Séverine Robert ◽  
...  

Blood coagulation starts immediately after damage to the vascular endothelium. This system is essential for minimizing blood loss from an injured blood vessel but also contributes to vascular thrombosis. Although it has long been thought that the intrinsic coagulation pathway is not important for clotting in vivo, recent data obtained with genetically altered mice indicate that contact phase proteins seem to be essential for thrombus formation. We show that recombinant Ixodes ricinus contact phase inhibitor (Ir-CPI), a Kunitz-type protein expressed by the salivary glands of the tick Ixodes ricinus, specifically interacts with activated human contact phase factors (FXIIa, FXIa, and kallikrein) and prolongs the activated partial thromboplastin time (aPTT) in vitro. The effects of Ir-CPI were also examined in vivo using both venous and arterial thrombosis models. Intravenous administration of Ir-CPI in rats and mice caused a dose-dependent reduction in venous thrombus formation and revealed a defect in the formation of arterial occlusive thrombi. Moreover, mice injected with Ir-CPI are protected against collagen- and epinephrine-induced thromboembolism. Remarkably, the effective antithrombotic dose of Ir-CPI did not promote bleeding or impair blood coagulation parameters. To conclude, our results show that a contact phase inhibitor is an effective and safe antithrombotic agent in vivo.


1998 ◽  
Vol 45 (2) ◽  
pp. 493-499 ◽  
Author(s):  
M Kyogashima ◽  
J Onaya ◽  
A Hara ◽  
T Taketomi

Sulfatide (galactosylceramide I3 -sulfate) has been reported to activate blood coagulation factor XII (Hageman factor), which suggests that it exhibits coagulant activity (Fujikama et al., 1980 Biochemistry 19, 1322-1330) However, sulfatide administered into animals as a bolus shot without subsequent thrombus formation, prolonged conventional clotting times and bleeding time (Hara et al., 1996 Glycoconjugate J. 13, 187-194). These findings suggest that it may exhibit anticoagulant rather than coagulant activity. Following this suggestion we found in vitro that binding of sulfatide to fibrinogen resulted in disturbance of fibrin formation. To examine a possible pharmacological effect of sulfatide on blood coagulation in vivo we continuously infused sulfatide into rats through plastic cannulae and found formation of giant thrombi around the tips of the cannulae. These data suggest that sulfatide may exhibit contradictory functions in the blood coagulation system.


2007 ◽  
Vol 27 (05) ◽  
pp. 373-377 ◽  
Author(s):  
K. T. Preissner

SummaryUpon vascular injury, locally controlled haemostasis prevents life threatening blood loss and ensures wound healing. Intracellular material derived from damaged cells at these sites will become exposed to cells and plasma proteins and could thereby influence vascular homeostasis, blood coagulation and defense mechanisms. Recently, this concept was documented by several studies indicating that extracellular nucleic acids, and RNA in particular, serve as promoter of blood coagulation in vivo and significantly increase the permeability across brain endothelial cells in vitro and in vivo. As procoagulant cofactor and ,,natural foreign material“, RNA triggers the contactphase pathway of blood coagulation and thereby contributes to pathological thrombus formation. Administration of RNase significantly delayed occlusive thrombus formation and prevented edema formation in different animal models. Thus, extracellular RNA derived from damaged and necrotic cells may serve as a natural danger signal that contributes to initiation of host defense mechanisms, while antagonizing RNase provides new regimens for antithrombotic and vessel-protective therapies.


1995 ◽  
Vol 74 (02) ◽  
pp. 655-659 ◽  
Author(s):  
Jean Marie Stassen ◽  
Anne-Marie Lambeir ◽  
Ingrid Vreys ◽  
Hans Deckmyn ◽  
Gaston Matthyssens ◽  
...  

SummaryUpon vascular damage platelet activation and blood coagulation are initiated. Interference at the initial level of the activation of the coagulation cascade can result in effective inhibition of thrombus formation. The in vivo antithrombotic properties of a series of bovine pancreatic trypsin inhibitor mutants (BPTI, aprotinin) 4C2, 7L22, 5L15, 5L15-PEG, 6L15 and 5L84, as described in the accompanying paper, with a combined inhibitory activity on factor Xa, factor VIIa-tissue factor complex, factor XIa and plasma kallikrein were compared to rTAP, r-hirudin, heparin and enoxaparin in a platelet rich thrombosis model in hamsters.Platelet dependent thrombus deposition was quantified by dedicated image analysis after transillumination of the femoral vein to which a standardised vascular trauma was applied. After increasing intravenous bolus injections all tested agents, except for aprotinin, induced a dose dependent decrease of thrombus formation and a concomitant prolongation of the aPTT. From the linear correlation between these two parameters it was found that 5 out of the 6 tested aprotinin analogues, rTAP and r-hirudin completely inhibited thrombus formation at a therapeutical (2- to 3-fold) aPTT prolongation while 4C2, heparin and enoxaparin only inhibited thrombus formation for 40 to 50 percent at a 2-fold aPTT prolongation. Based on the calculated IC50 values for thrombus formation rTAP was found to be the most active compound in this model.It is concluded that acceptable interference at the initial level of the blood coagulation, e. g. within a therapeutical aPTT prolongation, can significantly inhibit platelet deposition at a site of vascular injury.


2002 ◽  
Vol 30 (2) ◽  
pp. 194-200 ◽  
Author(s):  
R. C. Chambers ◽  
G. J. Laurent

Fibrotic disorders of the liver, kidney and lung are associated with excessive deposition of extracellular matrix proteins and ongoing coagulation-cascade activity. In addition to their critical roles in blood coagulation, thrombin and the immediate upstream coagulation proteases, Factors Xa and VIIa, influence numerous cellular responses that may play critical roles in subsequent inflammatory and tissue repair processes in vascular and extra-vascular compartments. The cellular effects of these proteases are mediated via proteolytic activation of a novel family of cell-surface receptors, the protease-activated receptors (PAR-1, −2, −3 and −4). Although thrombin is capable of activating PAR-1, −3 and −4, there is accumulating in vitro evidence that the profibrotic effects of thrombin are predominantly mediated via PAR-1. Factor Xa is capable of activating PAR-1 and PAR-2, but its mitogenic effects for fibroblasts are similarly mediated via PAR-1. These proteases do not exert their profibrotic effects directly, but act via the induction of potent fibrogenic mediators, such as platelet-derived growth factor and connective tissue growth factor. In vivo studies using proteolytic inhibitors, PAR-1 antagonists and PAR-1-deficient mice have provided evidence that coagulation proteases play a key role in tissue inflammation and in a number of vascular pathologies associated with hyperproliferation of smooth muscle cells. More recently, coagulation proteases have also been shown to play a role in the pathogenesis of fibrosis but the relative contribution of their cellular versus their procoagulant effects awaits urgent evaluation in vivo. These studies will be informative in determining the potential application of PAR-1 antagonists as antifibrotic agents.


Sign in / Sign up

Export Citation Format

Share Document