scholarly journals The diamondback moth Plutella xylostella: ecological and biological aspects, harmfulness, population control

2021 ◽  
Vol 104 (1) ◽  
pp. 28-39
Author(s):  
I. V. Andreeva* ◽  
E. I. Shatalova ◽  
A. V. Khodakova

Data on prevalence, biological and physiological characteristics of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) are presented. Pest damage is described. Reasons causing increase in harmfulness and economic importance of the insect are noted. An increase in the number of generations able to develop during growing season and earlier pest emergence are recorded under conditions of Siberian region. Factors contributing to the insect density dynamics, including plant species and variety, entomophagous arthropods and entomopathogenic microorganisms, have been considered. Range of chemical insecticides recommended for diamondback moth management in Russian Federation has been indicated. An increase in resistance to chemicals and certain entomopathogens in P. xylostella populations in different regions of the world has been recorded. Possibility of pheromone traps exploitation for efficient pest detection and monitoring has been established. Perspectives of novel efficient and safe means of pest density regulation have been defined.

2022 ◽  
Vol 42 ◽  
pp. 02004
Author(s):  
Sergey Semerenko ◽  
Nadezhda Bushneva

The diamondback moth Plutella xylostella (Linnaeus, 1758) is a common pest of rapeseed and other crops of Brassicaceae family. Annual yield losses and costs of pest control worldwide are estimated at $ 4-5 billion. The pest has an increased tendency to develop resistance to insecticides. The use of traps with synthetic sex pheromone is a modern instrumental method of monitoring P. xylostella. The use of the mating disruption method will effectively decrease pest numbers and reduce the application of insecticides. In 2017-2020, we researched the pheromone activity and evaluated the mating disruption method in the sowings of spring rapeseed at V.S. Pustovoit All-Russian Research Institute of Oil Crops (VNIIMK) (Krasnodar). We established that P. xylostella males were caught in traps with all tested dispenser types. The pheromone showed the greatest activity on the foil-film dispenser (F). The mating disruption method effectively decreased P. xylostella population in rapeseed sowing; the disruption effect by the end of crop vegetation was high and reached 82.5 %.


2007 ◽  
Vol 97 (4) ◽  
pp. 337-350 ◽  
Author(s):  
B. Löhr ◽  
R. Gathu ◽  
C. Kariuki ◽  
J. Obiero ◽  
G. Gichini

AbstractDiadegma semiclausum (Hellén) (Hymenoptera: lchneumonidae), an exotic diamondback moth parasitoid, was released in two pilot areas (Werugha in Coast Region and Tharuni in Central Province) in Kenya. Fifteen month before release, observations on the diamondback moth, Plutella xylostella (Linnaeus), and local natural enemy population dynamics and pest damage were initiated in both areas and continued for three years after release. The P. xylostella population was bimodal with higher records during dry seasons. At Werugha, the peak population of P. xylostella was 16.8 per plant (October 2001); at Tharuni it was 12.8 (February 2002). Populations at Werugha declined from three months after release and decreased from 5.4 per plant (before release) to 0.8 (year 3 after release). Concurrently, average damage (1.9 to 1.5) (on a 0–5 scale), proportion of attacked plants (72 to 31%) and proportion of plants in damage group >2 (plants with head damage) decreased (21.4 to 5.3%), while total parasitism increased from 14.4 (before) to 52.5% (year 3 after release, 90% due to D. semiclausum). At Tharuni, D. semiclausum was only recovered 3 months after release. Average populations of P. xylostella declined from 5.9 per plant (before release) to 2.4 (year 3 after release) and damage scores from 2.3 to 1.7. The proportion of plants in damage group >2 declined from 39.7 to 4.5% while overall parasitism increased from 4.2 to 40.6% (98.3% by D. semiclausum). Four species of indigenous parasitoids (Diadegma mollipla (Holmgren), Oomyzus sokolowskii (Kurdjumov), Apanteles sp. and Itoplectis sp., all primary parasitoids) were almost completely displaced by D. semiclausum. Possible reasons for the different parasitoid development between the two release areas and the displacement of the indigenous species are discussed.


2017 ◽  
Vol 43 (2) ◽  
pp. 195
Author(s):  
Robson Thomaz Thuler ◽  
Fernando Henrique Iost Filho ◽  
Hamilton César De Oliveira Charlo ◽  
Sergio Antônio De Bortoli

Plant induced resistance is a tool for integrated pest management, aimed at increasing plant defense against stress, which is compatible with other techniques. Rhizobacteria act in the plant through metabolic changes and may have direct effects on plant-feeding insects. The objective of this study was to determine the effects of cabbage plants inoculated with rhizobacteria on the biology and behavior of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Cabbage seeds inoculated with 12 rhizobacteria strains were sowed in polystyrene trays and later transplanted into the greenhouse. The cabbage plants with sufficient size to support stress were then infested with diamondback moth caterpillars. Later, healthy leaves suffering injuries were collected and taken to the laboratory to feed P. xylostella second instar caterpillars that were evaluated for larval and pupal viability and duration, pupal weight, and sex ratio. The reduction of leaf area was then calculated as a measure of the amount of larval feeding. Non-preference for feeding and oviposition assays were also performed, by comparing the control treatment and plants inoculated with different rhizobacterial strains. Plants inoculated with the strains EN4 of Kluyvera ascorbata and HPF14 of Bacillus thuringiensis negatively affected the biological characteristics of P. xylostella when such traits were evaluated together, without directly affecting the insect behavior.


2021 ◽  
Author(s):  
Yaohui Wang ◽  
Xia Xu ◽  
Xi’en Chen ◽  
Xiaowei Li ◽  
Honglun Bi ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 109
Author(s):  
Norazila Yusoff ◽  
Idris Abd Ghani ◽  
Nurul Wahida Othman ◽  
Wan Mohd Aizat ◽  
Maizom Hassan

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cruciferous vegetables worldwide. In this study, we evaluated the properties of selected farnesyl derivative compounds against P. xylostella. The toxicity and sublethal concentration (LC50) of farnesyl acetate, farnesyl acetone, farnesyl bromide, farnesyl chloride, and hexahydrofarnesyl acetone were investigated for 96 h. The leaf-dip bioassays showed that farnesyl acetate had a high level of toxicity against P. xylostella compared to other tested farnesyl derivatives. The LC50 value was 56.41 mg/L on the second-instar larvae of P. xylostella. Then, the sublethal effects of farnesyl acetate on biological parameters of P. xylostella were assessed. Compared to the control group, the sublethal concentration of farnesyl acetate decreased pupation and emergence rates, pupal weight, fecundity, egg hatching rate, female ratio, and oviposition period. Furthermore, the developmental time of P. xylostella was extended after being exposed to farnesyl acetate. Moreover, the application of farnesyl acetate on P. xylostella induced morphogenetic abnormalities in larval–pupal intermediates, adults that emerged with twisted wings, or complete adults that could not emerge from the cocoon. These results suggested that farnesyl acetate was highly effective against P. xylostella. The sublethal concentration of farnesyl acetate could reduce the population of P. xylostella by increasing abnormal pupal and adults, and by delaying its development period.


2016 ◽  
Vol 132 ◽  
pp. 38-46 ◽  
Author(s):  
Shuzhen Zhang ◽  
Xiaolei Zhang ◽  
Jun Shen ◽  
Kaikai Mao ◽  
Hong You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document