scholarly journals EFFECT OF COMMON BUNT INFECTION ON AGRONOMIC TRAITS AND RESISTANCE IN WINTER WHEAT LINES

2018 ◽  
Vol 47 (5) ◽  
pp. 12-19
Author(s):  
Kuttymurat Tagayev ◽  
◽  
2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2007 ◽  
Vol 97 (11) ◽  
pp. 1397-1405 ◽  
Author(s):  
Denis A. Gaudet ◽  
Zhen-Xiang Lu ◽  
Frances Leggett ◽  
Bryan Puchalski ◽  
André Laroche

The infection of wheat lines Neepawa (susceptible), and its sib BW553 that is nearly isogenic for the Bt-10 resistance gene by differentially virulent races T1 and T27 of common bunt (Tilletia tritici), was followed for 21 days following seeding (dfs) using fluorescence and confocal microscopy. Spore germination was nonsynchronous and all spore stages including germination were observed 5 to 21 dfs. Initial host perception of pathogen invasion, based on autofluorescence in epidermal cells adjacent to the appressoria, was similar in both compatible and incompatible interactions, and occurred as early as 5 to 6 dfs. The total number of sites on a 1-cm segment of coleoptile adjacent to the seed that exhibited autofluorescence was similar in both the compatible and incompatible interactions and rose to a maximum of 35 to 40 per 1 cm length of coleoptile following 17 dfs, although new infection events were observed as late as 21 dfs. In the compatible interaction, the autofluorescence became more diffuse 10 to 12 dfs, emanating in all directions in association with fungal spread. In the incompatible interaction, autofluorescence remained restricted to a small area surrounding the penetration site. Two different reaction zones that extended further in tissues surrounding the penetration point in the incompatible interaction compared with the compatible interaction were identified. The accumulation of callose around invading fungal hyphae was observed during both the compatible and incompatible interactions from 8 to 21 dfs. While callose accumulation was more extensive and widespread in the incompatible interaction, it was clearly present in compatible interactions, particularly in treatments involving BW553. These results were confirmed by expression of callose synthase transcripts that were more abundant in BW553 than in Neepawa and were upregulated during pathogen infection in both compatible and incompatible interactions.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Amira M. I. Mourad ◽  
Ahmed Sallam ◽  
Vikas Belamkar ◽  
Ezzat Mahdy ◽  
Bahy Bakheit ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 74-81
Author(s):  
L. Golosna ◽  
O. G. Afanasieva ◽  
O.V. Shevchuk ◽  
L.O. Kucherova ◽  
I.S. Shvets ◽  
...  

Aim. To determine the resistance of winter wheat varieties to the main pathogens, to establish their stability and plasticity, to identify perspective sources of resistance. Methods. Laboratory – production of inoculum of pathogens; field – artificial inoculation,, assessment of variety stability; statistical calculation of disease severity, indicators of stability and plasticity. Results. In 2015–2017, the resistance of 43 varieties of winter wheat to the main pathogens of leaf diseases, common bunt and root rots was assessed. Resistance to powdery mildew was found in 32 varieties, tan spot – in 2, root rot – in 3, hard smut – in 2 varieties. Six varieties of winter wheat were characterized by group resistance. Varieties that combine high plasticity and stability of the sign of disease resistance have been identified. Conclusions. Valuable sources of resistance are winter wheat varieties with group resistance to common bunt and powdery mildew – Tradytsiia Odeska and Kurs; powdery mildew and tan spot – Nasnaga and Zolotonozhka; powdery mildew and root rot – Nezabudka and Shchedrist kyivska.Keywords: resistance, winter wheat, diseases, plasticity, stability.


Crop Science ◽  
1988 ◽  
Vol 28 (5) ◽  
pp. 756-760 ◽  
Author(s):  
T. S. Cox ◽  
J. P. Shroyer ◽  
Liu Ben‐Hui ◽  
R. G. Sears ◽  
T. J. Martin

2012 ◽  
Vol 38 (No. 3-4) ◽  
pp. 97-103 ◽  
Author(s):  
J. Košner ◽  
K. Pánková

For 17 cultivars of winter wheat (Triticum aestivum L.) different vernalization and photoperiod responses were detected. The effect of photoperiod sensitivity was not significantly changed by vernalization; different vernalization responses were probably due to the presence of multiple alleles at Vrn loci. The delay in heading depended on the vernalization deficit exponentially: y = Parameter (1) + (y0 – Parameter (1)) × EXP (Parameter (2) × (x – x0)). The dependence was shown to be general and significant for the given model in all the studied cultivars. Individual regressions characterised responses of cultivars to a deficit of vernalization treatment. Cluster analysis according to the characterisation obtained (full vernalization requirement, minimum vernalization requirement, insufficient vernalization and parameters of the dependence) showed the relationships between cultivars and enabled their grouping by similar profiles of vernalization, and, possibly, of photoperiod response. In individual cultivars, an attempt was made to use the model to predict performance for some agronomic traits.


2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

Sign in / Sign up

Export Citation Format

Share Document