scholarly journals Random non-proportional fatigue tests with planar tri-axial fatigue testing machine

2016 ◽  
Vol 10 (38) ◽  
pp. 259.265
Author(s):  
T. Inoue ◽  
R. Nagao ◽  
N. Takeda
2016 ◽  
Vol 17 ◽  
pp. 14-30 ◽  
Author(s):  
Okechukwu P. Nwachukwu ◽  
Alexander V. Gridasov ◽  
Ekaterina A. Gridasova

This review looks into the state of gigacycle fatigue behavior of some structural materials used in engineering works. Particular attention is given to the use of ultrasonic fatigue testing machine (USF-2000) due to its important role in conducting gigacycle fatigue tests. Gigacycle fatigue behavior of most materials used for very long life engineering applications is reviewed.Gigacycle fatigue behavior of magnesium alloys, aluminum alloys, titanium alloys, spheroid graphite cast iron, steels and nickel alloys are reviewed together with the examination of the most common material defects that initiate gigacycle fatigue failures in these materials. In addition, the stage-by-stage fatigue crack developments in the gigacycle regime are reviewed. This review is concluded by suggesting the directions for future works in gigacycle fatigue.


2017 ◽  
Vol 734 ◽  
pp. 194-201 ◽  
Author(s):  
Yutaka Konishi ◽  
Takamoto Itoh ◽  
Masao Sakane ◽  
Fumio Ogawa ◽  
Hideyuki Kanayama

This paper investigates the fatigue results in low cycle fatigue region obtained from a miniaturized specimen having a 6mm gage length, 3mm diameter and 55mm total length. Fatigue tests were performed for two type lead-free solders using horizontal-type electrical servo hydraulic push-pull fatigue testing machine. Materials employed were Sn-3.0Ag-0.5Cu and Sn-5Sb. The results from Sn-3.0Ag-0.5Cu were compared with those obtained using a bulk specimen in a previous study. Relationship between strain range and number of cycles to failure of the small-sized specimen agreed with those of the bulk specimens. The testing techniques are applicable to Sn-5Sb following the Manson-Coffin law. These results confirm that the testing technique proposed here, using small-sized specimen, is suitable to get fruitful fatigue data for lead-free solder compounds.


Author(s):  
Naoki Osawa ◽  
Tetsuya Nakamura ◽  
Norio Yamamoto ◽  
Junji Sawamura

A new simple fatigue testing machine, which can carry out fast and low-cost fatigue tests of welded joints subject to wave with high frequency vibration, has been developed. This machine is designed for plate bending type fatigue tests, and wave load is applied by using motors with eccentric mass. Springing vibration is superimposed by attaching an additional vibrator to the test specimen, and whipping vibration is superimposed by an intermittent hammering. Fatigue tests which simulate springing and whipping by a conventional servo-type fatigue testing machines are very expensive and use a large amount of electricity. If one uses these conventional machines, it is difficult to simulate superimposed stress wave forms at high speed, and it takes long hours of testing to examine the high frequency effect. In contrast, it is found that fatigue tests can be carried out in fast, i.e. waves with 10Hz or higher frequency for out-of-plane gusset welded joint specimens with 12mm plate thickness by using the developed machine. The electricity to be used for fatigue tests could be minimal, for example one thousandth of that needed for conventional machines. These results demonstrate the superiority of the developed machine.


2007 ◽  
Vol 353-358 ◽  
pp. 142-145 ◽  
Author(s):  
Ki Weon Kang ◽  
Byeong Choon Goo ◽  
J.H. Kim ◽  
Heung Seob Kim ◽  
Jung Kyu Kim

This paper deals with the fatigue behavior and its statistical properties of SM490A steel at various temperatures, which is utilized in the railway vehicle. For these goals, the tensile ad fatigue tests were performed by using a servo-hydraulic fatigue testing machine at three temperatures: +20°C, -10°C and -40°C. The static strength and fatigue limits of SM490A steel were increased with decreasing of test temperature. The probabilistic properties of fatigue behavior are investigated by means of probabilistic stress-life (P-S-N) curve and they are well in conformance with the experimental results regardless of temperature. Also, based on P-S-N curves, the variation of fatigue life is investigated and as the temperature decreases, the variation of fatigue life increases moderately.


1959 ◽  
Vol 8 (68) ◽  
pp. 415-418
Author(s):  
Minoru KAWAMOTO ◽  
Tsuneshichi TANAKA ◽  
Yoshimasa MIKI

2021 ◽  
Vol 877 ◽  
pp. 49-54
Author(s):  
Lorenzo Maccioni ◽  
Lorenzo Fraccaroli ◽  
Yuri Borgianni ◽  
Franco Concli

On the one hand, many mechanical components manufactured through additive technologies are optimized in terms of stiffness/weight or strength/weight thanks to lattice structures. On the other hand, the high complexity of these components often impedes further finishing operations and, therefore, the fatigue strength can be compromised. The high surface to volume ratio together with the high roughness, typical of additive manufactured components, promote the crack nucleation. In this paper, the High-Cycle-Fatigue (HCF) behavior of the 17-4 PH stainless steel (SS) was characterized. Cylindrical samples, manufactured via Selective Laser Melting (SLM) with an EOS M280, were tested in the as-build condition through a STEPLab UD04 fatigue-testing machine. In particular, a preliminary quasi-static traction test was performed on a sample to obtain the yield strength (σY = 570 MPa) and the ultimate tensile strength (UTS = 1027 MPa). Fatigue tests were performed on samples at different stress levels in order to characterize the whole Stress-Number of cycles (S-N) curve (Wöhler diagram). More specifically, the stair-case method combined with the Dixon approach were exploited to calculate the fatigue limit (σF = 271 MPa). The obtained results were compared with those present in literature for the same material and they are coherent with previous researches


2016 ◽  
Vol 853 ◽  
pp. 534-538
Author(s):  
Takahiro Morishita ◽  
Takamoto Itoh ◽  
Masao Sakane

This study presents a newly developed multiaxial high cycle fatigue testing machine which can load a cyclic bending loading and a reversed torsion loading onto an hour-glass shaped solid bar specimen. This testing machine can perform the fatigue tests with a high frequency under a proportional and a non-proportional loading conditions. In the non-proportional loading, principal directions of stress and strain are changed in a cycle. In the testing machine, the loading is generated by centrifugal force caused by the revolving weights attached to rotational wheels. The maximum frequency of the testing machine is 50Hz. A material tested was a type 304 stainless steel. In the test, two types of loading paths are employed, a proportional loading and a non-proportional loading. The former is a cyclic bending loading and the latter a combining cyclic bending and reversed torsion loading in the developed testing machine. In this study, an applicability of the testing machine is evaluated by carrying out the tests under these loading conditions.


2012 ◽  
Vol 165 ◽  
pp. 219-223
Author(s):  
K.A. Zakaria ◽  
S. Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
C.H. Azhari

This paper discusses the fatigue fracture behaviour of aluminium alloy AA6061-T6 under spectrum loadings at room and elevated temperatures. The load sequence can have a very significant effect in fatigue lives and normally the fatigue strength of material decrease with increasing temperature. In this study, variable amplitude loading (VAL) signal was obtained from the engine mount bracket of an automobile in a normal driving condition. Constant amplitude loading (CAL), high to low and low to high spectrum loadings were then derived from the VAL obtained from the data capturing process to study the fatigue behaviour that subjected to spectrum loadings at the room and elevated temperatures. The fatigue tests were performed according to an ASTM E466 standard using a servo-hydraulic fatigue testing machine. Fatigue fracture surfaces were then sectioned and inspected by employing a high magnification microscope. Results indicated that fracture surface behaviours of specimens were influenced significantly by the load sequence and temperatures, which can be related to the fatigue lives of aluminium alloy under spectrum loadings.


1971 ◽  
Vol 14 (76) ◽  
pp. 1013-1020
Author(s):  
Minoru KAWAMOTO ◽  
Yukihiko IBUKI ◽  
Toshinobu SHIBATA ◽  
Hiroshi ISHIKAWA

Sign in / Sign up

Export Citation Format

Share Document