scholarly journals Soil crusting and surface runoff in agricultural land in Galicia (NW Spain)

2015 ◽  
Vol 5 ◽  
Author(s):  
M. Mercedes Taboada-Castro ◽  
M. Luz Rodríguez-Blanco ◽  
Laura Palleiro ◽  
M. Teresa Taboada-Castro

This study discusses the soil surface conditions under which crusting and runoff are generated. A field survey was conducted in three agricultural districts in the province of A Coruña (Galicia, Spain), where the soils, developed over basic schists in a temperate-humid climate, are prone to crusting. A total of 168 freshly tilled surfaces and the cumulative natural rainfall since the last tillage operation were studied. The agricultural situations corresponded to primary and secondary tillage, crop seedbeds and pasture seedbeds. Stages of soil crusting were recorded by visual assessment, based on the estimation of the extent of structural, transitional and sedimentary crusting. The runoff was estimated by measuring the maximum distance reached by soil particles carried by the runoff and then deposited on the soil surface where there were no incisions on soil. Surface crusting was observed in all agricultural situations. The amount of accumulated rainfall required to form a fully sedimentary crust was variable, depending largely on the initial soil surface roughness. On average, 50, 150 and 350 mm of accumulated rainfall were required for soil surfaces with a low, medium and high roughness, respectively. The combination of three soil surface conditions (crusting stage, roughness and vegetation cover) was primarily responsible for the start of runoff formation.

2007 ◽  
Vol 14 (3) ◽  
pp. 223-235 ◽  
Author(s):  
E. Vidal Vázquez ◽  
J. G. V. Miranda ◽  
A. Paz González

Abstract. Accurate description of soil surface topography is essential because different tillage tools produce different soil surface roughness conditions, which in turn affects many processes across the soil surface boundary. Advantages of fractal analysis in soil microrelief assessment have been recognised but the use of fractal indices in practice remains challenging. There is also little information on how soil surface roughness decays under natural rainfall conditions. The objectives of this work were to investigate the decay of initial surface roughness induced by natural rainfall under different soil tillage systems and to compare the performances of a classical statistical index and fractal microrelief indices. Field experiments were performed on an Oxisol at Campinas, São Paulo State (Brazil). Six tillage treatments, namely, disc harrow, disc plow, chisel plow, disc harrow + disc level, disc plow + disc level and chisel plow + disc level were tested. Measurements were made four times, firstly just after tillage and subsequently with increasing amounts of natural rainfall. Duplicated measurements were taken per treatment and date, yielding a total of 48 experimental surfaces. The sampling scheme was a square grid with 25×25 mm point spacing and the plot size was 1350×1350 mm, so that each data set consisted of 3025 individual elevation points. Statistical and fractal indices were calculated both for oriented and random roughness conditions, i.e. after height reading have been corrected for slope and for slope and tillage tool marks. The main drawback of the standard statistical index random roughness, RR, lies in its no spatial nature. The fractal approach requires two indices, fractal dimension, D, which describes how roughness changes with scale, and crossover length, l, specifying the variance of surface microrelief at a reference scale. Fractal parameters D and l, were estimated by two independent self-affine models, semivariogram (SMV) and local root mean square (RMS). Both algorithms, SMV and RMS, gave equivalent results for D and l indices, irrespective of trend removal procedure, even if some bias was present which is in accordance with previous work. Treatments with two tillage operations had the greatest D values, irrespective of evolution stage under rainfall and trend removal procedure. Primary tillage had the greatest initial values of RR and l. Differences in D values between treatments with primary tillage and those with two successive tillage operations were significant for oriented but not for random conditions. The statistical index RR and the fractal indices l and D decreased with increasing cumulative rainfall following different patterns. The l and D decay from initial value was very sharp after the first 24.4 mm cumulative rainfall. For five out of six tillage treatments a significant relationship between D and l was found for the random microrelief conditions allowing a covariance analysis. It was concluded that using RR or l together with D best allow joint description of vertical and horizontal soil roughness variations.


Soil Research ◽  
1986 ◽  
Vol 24 (2) ◽  
pp. 135 ◽  
Author(s):  
DM Freebairn ◽  
GH Wockner

Effects of soil surface conditions on runoff and soil loss were studied on two major cracking clay soils of the Darling Downs, Queensland. Techniques used to measure soil loss between field contour bays under natural rainfall are described, and the results from 10 contour bay catchments (66 plot years) are presented. Soil movement was separated into rill, interrill, suspended sediment and channel deposition. Two slope lengths were considered (60 and 35 m), and interrill erosion appeared to be the major source of soil loss. Runoff and sediment concentration were both inversely related to surface cover and total soil movement was greatly reduced by surface cover. In an annual winter-wheat, summer-fallow system, removal of stubble resulted in soil movement of 29-62 t ha-1 year-1. Retention of stubble (stubble mulching) reduced soil movement to less than 5 t ha-1 year-1. Greater than 75% of the variance in soil movement from single events was explained by surface cover and peak runoff rate. Surface cover is a measure of the surface area protected from soil detachment and entrainment. Peak runoff rate describes the amount of energy or stream power available for detachment and entrainment.


2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


2021 ◽  
Vol 11 (12) ◽  
pp. 5423
Author(s):  
Jose Luis Martinez ◽  
Manuel Esteban Lucas-Borja ◽  
Pedro Antonio Plaza-Alvarez ◽  
Pietro Denisi ◽  
Miguel Angel Moreno ◽  
...  

The evaluation of vegetation cover after post-fire treatments of burned lands is important for forest managers to restore soil quality and plant biodiversity in burned ecosystems. Unfortunately, this evaluation may be time consuming and expensive, requiring much fieldwork for surveys. The use of remote sensing, which makes these evaluation activities quicker and easier, have rarely been carried out in the Mediterranean forests, subjected to wildfire and post-fire stabilization techniques. To fill this gap, this study evaluates the feasibility of satellite (using LANDSAT8 images) and drone surveys to evaluate changes in vegetation cover and composition after wildfire and two hillslope stabilization treatments (log erosion barriers, LEBs, and contour-felled log debris, CFDs) in a forest of Central Eastern Spain. Surveys by drone were able to detect the variability of vegetation cover among burned and unburned areas through the Visible Atmospherically Resistant Index (VARI), but gave unrealistic results when the effectiveness of a post-fire treatment must be evaluated. LANDSAT8 images may be instead misleading to evaluate the changes in land cover after wildfire and post-fire treatments, due to the lack of correlation between VARI and vegetation cover. The spatial analysis has shown that: (i) the post-fire restoration strategy of landscape managers that have prioritized steeper slopes for treatments was successful; (ii) vegetation growth, at least in the experimental conditions, played a limited influence on soil surface conditions, since no significant increases in terrain roughness were detected in treated areas.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4386
Author(s):  
Afshin Azizi ◽  
Yousef Abbaspour-Gilandeh ◽  
Tarahom Mesri-Gundoshmian ◽  
Aitazaz A. Farooque ◽  
Hassan Afzaal

Soil roughness is one of the most challenging issues in the agricultural domain and plays a crucial role in soil quality. The objective of this research was to develop a computerized method based on stereo vision technique to estimate the roughness formed on the agricultural soils. Additionally, soil till quality was investigated by analyzing the height of plow layers. An image dataset was provided in the real conditions of the field. For determining the soil surface roughness, the elevation of clods obtained from tillage operations was computed using a depth map. This map was obtained by extracting and matching corresponding keypoints as super pixels of images. Regression equations and coefficients of determination between the measured and estimated values indicate that the proposed method has a strong potential for the estimation of soil shallow roughness as an important physical parameter in tillage operations. In addition, peak fitting of tilled layers was applied to the height profile to evaluate the till quality. The results of this suggest that the peak fitting is an effective method of judging tillage quality in the fields.


2019 ◽  
Vol 49 ◽  
Author(s):  
José Geraldo da Silva ◽  
Adriano Stephan Nascente ◽  
Pedro Marques da Silveira

ABSTRACT The presence of straw hinders the sowing of soybean cultivated in succession to rice, in areas irrigated by flooding. This study aimed to evaluate the combination of different configurations of a rice harvester and subsequent activities in the operational and energetic demand of rice straw management and in the soil surface roughness, in order to cultivate soybean in succession. Three independent experiments were conducted in a completely randomized design, as well as evaluated the fuel consumption, effective operating speed, working capacity and final surface roughness of the ground. The energy costs of harvesting rice do not increase when the automated harvester operates with a spreader to distribute the straw on the ground and to avoid the formation of furrows. The presence of rice plant residues in the field increases the skidding of the tractor when pulling the knife-roller, with a consequent reduction of the operating speed, but this does not affect the operational capacity and the fuel consumption. The increase in the number of light harrowings, from one to two operations, in areas worked with knife-roller or intermediate harrow, requires more time and fuel in the management of the soil and rice straw, but leaves the ground with less surface roughness. The management system with knife-roller operation and two light harrowings is the most appropriate method to prepare the soil for soybean cultivation after rice, because it provides the best combination of technical and energetic performance.


Sign in / Sign up

Export Citation Format

Share Document