Column Study for Adsorption of Methylene Blue Dye using Azadirachta indica Adsorbent

2020 ◽  
Vol 17 (4) ◽  
pp. 47-52
Author(s):  
Vibha Goswami ◽  
Renu Upadhyaya ◽  
Sumanta Kumar Meher

In this study, synthesised Azadirachta indica adsorbent was used for the removal of methylene blue dye using a packed bed column. The effect of feed flow rate, feed methylene blue dye concentration, and bed height of column on percentage removal of dye was studied. It was observed that the column bed exhausted rapidly at a higher flow rate and therefore, a breakthrough occurred faster. However, it was observed that bed exhaustion time increases on increasing the bed height from 2 to 10 inch at 10 mg/L feed dye concentration and feed flow rate of 40 ml/min. It was also found that the breakthrough curve is more dispersed and the percentage removal of dye increases on decreasing the feed methylene dye concentration from 150 to 10 mg/L. The percentage removal was found to be 96.89% at 20 ml/min of feed flow rate under 10 inch of bed height and 10 mg/L of feed dye concentration. The atomic absorption spectrophotometer and scanning electron microscope were used for estimating the effluent dye concentration from the column and morphological study, respectively.

2011 ◽  
Vol 236-238 ◽  
pp. 3016-3019
Author(s):  
Siriwan Srisorrachatr

The removal of dyes from synthetic wastewater by sunflower husk was studied in batch and dynamics removal. The extent of adsorption was studied in batch as a function of burning temperature, chemical treatment, adsorbents size, pH and solution temperature. Methylene blue and Mexican red in aqueous solution was used as synthetic wastewater. Dynamic removal of methylene blue and Mexican red by sunflower husk was also studied in packed bed column. In batch, both dyes were removed with the maximum adsorption by unburned adsorbents. Removal of methylene blue was increased when the adsorbents treated with NaOH whereas treated with HCl for Mexican red. The optimum pH for removal of methylene blue solution was between 4 and 10 and the maximum value for Mexican red was pH 2. The adsorption of methylene blue and Mexican red follows Langmuir adsorption model. In packed bed column, values of column parameter were investigated as a function of flow rate and bed height. Dynamic of adsorption process was modeled by bed depth service time (BDST) and the experimental data were fitted very well to the BDST model


2020 ◽  
Vol 8 (3) ◽  
pp. 8-13
Author(s):  
K. Thirugnanasambandham

Global warming due to greenhouse gases has become a serious global issue. Extensive efforts are being made to fighting this phenomenon through carbon capture as carbon dioxide (CO2) is its major contributor. This study focused on CO2 capture in packed bed column reactor using Poly-(D) glucosamine under the various process parameters such as temperature, feed flow rate and mass of the adsorbent. Statistical design of experiments was carried out in order to analysis the effect process parameters on the capacity of CO2 capture in packed bed column. The obtained results show that feed flow rate has the significant affect compared to others. The maximum of 956 mg of CO2 is captured under the following operating conditions; temperature of 40oC, feed flow rate of 30 ml/min and 0.25 g of the Poly-(D) glucosamine. The ability of Poly-(D) glucosamine to capture the CO2 in packed bed column is confirmed.


2016 ◽  
Vol 16 (1) ◽  
pp. 23 ◽  
Author(s):  
Norwin Dale F Duga ◽  
Pauline Edrickke A Imperial ◽  
Allan N Soriano ◽  
Aileen D Nieva

Bagasse, a waste material from sugarcane has been studied as a biosorbent for removing heavy metals, Pb2+ and Cu2+, in a continuous system using a packed bed column. This study was undertaken to determine the influence of varying the bed height and flow rate on the breakthrough and saturation time. Thomas, Adams-Bohart and Yoon-Nelson models were used to assess the effects of varying parameters and both Thomas and Yoon-Nelson models were found to be satisfactory to describe the column data obtained in the experiment. Moreover, lead ions are adsorbed more efficiently with an adsorption capacity of 4.54 mg/g compared to copper ions with 3.98 mg/g at the most feasible parameters having a flow rate of 100 mL/min and a bed height of 30 cm


2020 ◽  
Vol 8 (3) ◽  
pp. 1-7
Author(s):  
Aya Ayad Hussein ◽  
Rajaaaldeen Abd Khalid

Global warming due to greenhouse gases has become a serious global issue. Extensive efforts are being made to fighting this phenomenon through carbon capture as carbon dioxide (CO2) is its major contributor. This study focused on CO2 capture in packed bed column reactor using Poly-(D) glucosamine under the various process parameters such as temperature, feed flow rate and mass of the adsorbent. Statistical design of experiments was carried out in order to analysis the effect process parameters on the capacity of CO2 capture in packed bed column. The obtained results show that feed flow rate has the significant affect compared to others. The maximum of 956 mg of CO2 is captured under the following operating conditions; temperature of 40oC, feed flow rate of 30 ml/min and 0.25 g of the Poly-(D) glucosamine. The ability of Poly-(D) glucosamine to capture the CO2 in packed bed column is confirmed.


Author(s):  
Saraa Muwafaq Ibrahim ◽  
Ziad T. Abd Ali

Batch experiments have been studied to remove methylene blue dye (MB) from aqueous solution using modified bentonite. The modified bentonite was synthesized by replacing exchangeable calcium cations in natural bentonite with cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The characteristics of modified bentonite were studied using different analysis such as Scanning electronic microscopy (SEM), Fourier transform infrared spectrometry (FTIR) and surface area. Where SEM shows the natural bentonite has a porous structure, a rough and uneven appearance with scattered and different block structure sizes, while the modified bentonite surface morphology was smooth and supplemented by a limited number of holes. On other hand, (FTIR) analysis that proved NH group aliphatic and aromatic group of MB and silanol group are responsible for the sorption of contaminate. The organic matter peaks at 2848 and 2930 cm-1 in the spectra of modified bentonite which are sharper than those of the natural bentonite were assigned to the CH2 scissor vibration band and the symmetrical CH3 stretching absorption band, respectively, also the 2930 cm-1 peak is assigned to CH stretching band. The batch study was provided the maximum removal efficiency (99.99 % MB) with a sorption capacity of 129.87 mg/g at specified conditions (100 mg/L, 25℃, pH 11 and 250rpm). The sorption isotherm data fitted well with the Freundlich isotherm model. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules.


2018 ◽  
Vol 8 (3) ◽  
pp. 502-513
Author(s):  
Saravanan Narayanan ◽  
Rathika Govindasamy

Sign in / Sign up

Export Citation Format

Share Document