scholarly journals A Comparative Study of Swarm Intelligence-Based Optimization Algorithms in WSN

2020 ◽  
Vol 8 (3) ◽  
pp. 1-7
Author(s):  
Aya Ayad Hussein ◽  
Rajaaaldeen Abd Khalid

Global warming due to greenhouse gases has become a serious global issue. Extensive efforts are being made to fighting this phenomenon through carbon capture as carbon dioxide (CO2) is its major contributor. This study focused on CO2 capture in packed bed column reactor using Poly-(D) glucosamine under the various process parameters such as temperature, feed flow rate and mass of the adsorbent. Statistical design of experiments was carried out in order to analysis the effect process parameters on the capacity of CO2 capture in packed bed column. The obtained results show that feed flow rate has the significant affect compared to others. The maximum of 956 mg of CO2 is captured under the following operating conditions; temperature of 40oC, feed flow rate of 30 ml/min and 0.25 g of the Poly-(D) glucosamine. The ability of Poly-(D) glucosamine to capture the CO2 in packed bed column is confirmed.

2020 ◽  
Vol 8 (3) ◽  
pp. 8-13
Author(s):  
K. Thirugnanasambandham

Global warming due to greenhouse gases has become a serious global issue. Extensive efforts are being made to fighting this phenomenon through carbon capture as carbon dioxide (CO2) is its major contributor. This study focused on CO2 capture in packed bed column reactor using Poly-(D) glucosamine under the various process parameters such as temperature, feed flow rate and mass of the adsorbent. Statistical design of experiments was carried out in order to analysis the effect process parameters on the capacity of CO2 capture in packed bed column. The obtained results show that feed flow rate has the significant affect compared to others. The maximum of 956 mg of CO2 is captured under the following operating conditions; temperature of 40oC, feed flow rate of 30 ml/min and 0.25 g of the Poly-(D) glucosamine. The ability of Poly-(D) glucosamine to capture the CO2 in packed bed column is confirmed.


2020 ◽  
Vol 17 (4) ◽  
pp. 47-52
Author(s):  
Vibha Goswami ◽  
Renu Upadhyaya ◽  
Sumanta Kumar Meher

In this study, synthesised Azadirachta indica adsorbent was used for the removal of methylene blue dye using a packed bed column. The effect of feed flow rate, feed methylene blue dye concentration, and bed height of column on percentage removal of dye was studied. It was observed that the column bed exhausted rapidly at a higher flow rate and therefore, a breakthrough occurred faster. However, it was observed that bed exhaustion time increases on increasing the bed height from 2 to 10 inch at 10 mg/L feed dye concentration and feed flow rate of 40 ml/min. It was also found that the breakthrough curve is more dispersed and the percentage removal of dye increases on decreasing the feed methylene dye concentration from 150 to 10 mg/L. The percentage removal was found to be 96.89% at 20 ml/min of feed flow rate under 10 inch of bed height and 10 mg/L of feed dye concentration. The atomic absorption spectrophotometer and scanning electron microscope were used for estimating the effluent dye concentration from the column and morphological study, respectively.


2021 ◽  
pp. 134029
Author(s):  
Hannaneh Rasouli ◽  
Ion Iliuta ◽  
Francis Bougie ◽  
Alain Garnier ◽  
Maria C. Iliuta

2021 ◽  
Vol 25 (12) ◽  
pp. 53-59
Author(s):  
Pejavara Narayana Gururaj ◽  
Kulathooran Ramalakshmi ◽  
Sureshkumar Sujithra ◽  
Ravichandran Shalini

The objective of this study is to evaluate the different process parameters on adsorption of chromium VI on a packed bed column using Vetiver (Vetiveria zizanioides) and to examine the effect of pH, Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD) at a constant contact time of 10 minutes at a temperature of 40 ºC under two experimental conditions namely, tannery effluent with and without microwave treatment. The results revealed that microwave heating process had a higher impact on chromium (VI) adsorption than normal heating process. The pH values of microwave treated sample were found to be 6.65±0.65 when compared to normal heated sample where the pH was 4.62±0.72 when compared to the initial pH of effluent found to be 3.47±0.58. Further, a threefold reduction in BOD and COD values was observed in microwave treated vetiver sample which was around 86.73±1.43 and 107.90±2.82 mg/l respectively when compared to normal heated sample (250±1.45 and 200±2.65 mg/l respectively) and untreated effluent (780±2.53 and 920±3.86 mg/l respectively) which indicated the reduction of chromium VI present in the effluent water. It was also observed that the metal adsorption capacity of the vetiver powder and the adsorption characteristics were positively correlated with the FTIR and SEM analysis which confirmed the presence of chromium (VI) on the surface of vetiver.


2012 ◽  
Vol 488-489 ◽  
pp. 1414-1418 ◽  
Author(s):  
C.D. Naiju ◽  
K. Annamalai ◽  
P.K. Manoj ◽  
K.M. Ayaz

Direct metal laser sintering (DMLS) is one of the methods in layer manufacturing technologies by which metal powder can be directly used to produce both prototype and production tools. The components manufactured by DMLS should have essential hardness for its application in the industry. This study was carried out to determine the optimum process parameters influencing the hardness of the components produced by DMLS. Sintering speed, hatch spacing, post contouring, infiltration and hatch type are the process parameters taken up for study. Statistical design of experiments using Taguchi’s orthogonal array was employed for this study. The experimental data obtained were analyzed using ANOVA. From the results, it is found that one of the process parameters; scan spacing affects the hardness of the parts produced by this technology to a significant extent.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5793
Author(s):  
Eero Inkeri ◽  
Tero Tynjälä

The demand for carbon capture is increasing over time due to rising CO2 levels in the atmosphere. Even though fossil emission could be decreased or even eliminated, there is a need to start removing CO2 from the atmosphere. The removed CO2 could be either stored permanently to a reservoir (CCS, Carbon Capture and Storage) or utilized as a raw material in a long-lasting product (CCU, Carbon Capture and Utilization). The capture of CO2 could be done by direct air capture, or capturing CO2 from biogenic sources. Amine absorption is the state-of-the-art method to capture CO2, but it has some drawbacks: toxicity, high heat demand, and sorbent sensitivity towards impurities such as sulfur compounds and degradation in cyclic operation. Another potential solvent for CO2 could be water, which is easily available and safe to use in many applications. The problem with water is the poorer solubility of CO2, compared with amines, which leads to larger required flow rates. This study analyzed the technical feasibility of water absorption in a counterflow bubble column reactor. A dynamic, one-dimensional multiphase model was developed. The gas phase was modeled with plug flow assumption, and the liquid phase was treated as axially dispersed plug flow. CO2 capture efficiency, produced CO2 mass flow rate, and the product gas CO2 content were estimated as a function of inlet gas and liquid flow rate. In addition, the energy consumption per produced CO2-tonne was calculated. The CO2 capture efficiency was improved by increasing the liquid flow rate, while the CO2 content in product gas was decreased. For some of the studied liquid flow rates, an optimum gas flow rate was found to minimize the specific energy consumption. Further research is required to study the integration and dynamical operation of the system in a realistic operation environment.


2018 ◽  
Vol 18 (5) ◽  
pp. 70-75
Author(s):  
A. A. Dyusembaeava ◽  
V. I. Vershinin

The computer simulation was based on an adequate kinetic model with allowance for deactivation of the Pt-Sn catalyst. Weight proportions of the target reforming products (benzene, toluene, xylenes) were calculated by varying sequentially the process parameters: temperature between 480 and 550 °C, pressure between 6 and 10 atm, volume feed flow rate between 0.9 and 1.5 h–1, hydrogen-rich gas circulation ratio between 400 and 550 m3/m3. It was established that the inlet temperature elevation, pressure reduction and a decrease in the hydrogen-rich gas circulation ratio led to an increase in the total yield of arenes but not to change in the proportions of different arenes. These results agreed with the theoretical assumptions and analytic data on the real platformate. Reduction of the volume feed flow rate at otherwise identical conditions resulted in improvement of the expected yield of arenes and in a change in proportions of arenes in the platformate: the proportion of xylenes decreased but the proportion of benzene and toluene increased.


Sign in / Sign up

Export Citation Format

Share Document