scholarly journals An investigation on the biotribocorrosion behaviour of CoCrMo alloy grafted with polyelectrolyte brush

2014 ◽  
Vol 24 (6) ◽  
pp. 2151-2159 ◽  
Author(s):  
Hong-Yu Zhang ◽  
Yu-Jiao Zhu ◽  
Xiang-Yu Hu ◽  
Yan-Fang Sun ◽  
Yu-Long Sun ◽  
...  
Wear ◽  
2020 ◽  
Vol 458-459 ◽  
pp. 203443
Author(s):  
Shoufan Cao ◽  
Stefano Mischler
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2551
Author(s):  
Wojciech Kajzer ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Marcin Basiaga ◽  
Joanna Jaworska ◽  
...  

In this study, we aimed to determine the effect of long-term exposure to artificial urine on the physical properties of CoCrMo alloy with biodegradable heparin-releasing polymeric coatings. Variants of polymer coatings of poly(L,L-lactide-ɛ-caprolactone) (P(L,L-L/CL)) and poly(D,L-lactide-ɛ-caprolactone) (P(D,L-L/CL)) constituting the base for heparin-releasing (HEP) polyvinyl alcohol (PVA) coatings were analyzed. The coatings were applied by the dip-coating method. Heparin was used to counteract the incrustation process in the artificial urine. The study included tests of wettability, resistance to pitting and crevice corrosion, determination of the mass density of metal ions penetrating into the artificial urine, and the kinetics of heparin release. In addition, microscopic observations of surface roughness and adhesion to the metal substrate were performed. Electrolytically polished CoCrMo samples (as a reference level) and samples with polymer coatings were used for the tests. The tests were conducted on samples in the initial state and after 30, 60, and 90 days of exposure to artificial urine. The analysis of the test results shows that the polymer coatings contribute by improving the resistance of the metal substrate to pitting and crevice corrosion in the initial state and reducing (as compared with the metal substrate) the mass density of metal ion release into the artificial urine. Moreover, the PVA + HEP coating, regardless of the base polymer coatings used, contributes to a reduction in the incrustation process in the first 30 days of exposure to the artificial urine.


Langmuir ◽  
2021 ◽  
Author(s):  
Shohei Shiomoto ◽  
Hayato Higuchi ◽  
Kazuo Yamaguchi ◽  
Hiromitsu Takaba ◽  
Motoyasu Kobayashi

Author(s):  
Divya Bijukumar ◽  
Abhijith Segu ◽  
Paul Chastain ◽  
Mathew T. Mathew

2017 ◽  
Vol 26 (6) ◽  
pp. 2869-2877 ◽  
Author(s):  
Zhang Guoqing ◽  
Yang Yongqiang ◽  
Lin Hui ◽  
Song Changhui ◽  
Zhang Zimian

2021 ◽  
Vol 7 (3) ◽  
Author(s):  
Nagoor Basha Shaik ◽  
Kedar Mallik Mantrala ◽  
Balaji Bakthavatchalam ◽  
Qandeel Fatima Gillani ◽  
M. Faisal Rehman ◽  
...  

AbstractThe well-known fact of metallurgy is that the lifetime of a metal structure depends on the material's corrosion rate. Therefore, applying an appropriate prediction of corrosion process for the manufactured metals or alloys trigger an extended life of the product. At present, the current prediction models for additive manufactured alloys are either complicated or built on a restricted basis towards corrosion depletion. This paper presents a novel approach to estimate the corrosion rate and corrosion potential prediction by considering significant major parameters such as solution time, aging time, aging temperature, and corrosion test time. The Laser Engineered Net Shaping (LENS), which is an additive manufacturing process used in the manufacturing of health care equipment, was investigated in the present research. All the accumulated information used to manufacture the LENS-based Cobalt-Chromium-Molybdenum (CoCrMo) alloy was considered from previous literature. They enabled to create a robust Bayesian Regularization (BR)-based Artificial Neural Network (ANN) in order to predict with accuracy the material best corrosion properties. The achieved data were validated by investigating its experimental behavior. It was found a very good agreement between the predicted values generated with the BRANN model and experimental values. The robustness of the proposed approach allows to implement the manufactured materials successfully in the biomedical implants.


2016 ◽  
Vol 1133 ◽  
pp. 334-338
Author(s):  
Mohd Afian Omar ◽  
Noorsyakirah Abdullah ◽  
Rosliza Sauti ◽  
Nurazilah Mohd Zainon ◽  
Nurhaslina Johari ◽  
...  

Metal Injection Moulding (MIM) has undergone development of various binder systems with the aims of shortening the overall debinding time duration. In the present work, binder system based on biopolymer has been utilised in injection moulding of hip stem CoCrMo alloy powder. The feedstock consisted of CoCrMo powder with mean diameter particle size of 16μm and binder system which comprised of major fraction of wax and minor fraction of polyethylene. The moulded part was immersed into n-heptane at 60°C in order to remove the paraffin wax and stearic acid, followed by sintering in a controlled vacuum atmosphere. Results showed that solvent extraction debinding technique allowed complete removal of paraffin wax and stearic acid from the injection moulded part within 5 hours without swelling or distortion of the debound part. Lower heating rate needed during thermal pyrolysis in order to retain the shape due to the thickness of the part.Keywords: CoCrMo, MIM, wax, debinding,


1999 ◽  
Vol 32 (24) ◽  
pp. 8189-8196 ◽  
Author(s):  
E. B. Zhulina ◽  
O. V. Borisov ◽  
T. M. Birshtein

Sign in / Sign up

Export Citation Format

Share Document