Nonlinear rolling of ships in regular beam seas

1986 ◽  
Vol 33 (379) ◽  
pp. 40-49 ◽  
Author(s):  
A.H. Nayfeh ◽  
A.A. Khdeir
Keyword(s):  
2009 ◽  
Vol 33 (9) ◽  
pp. 629-634 ◽  
Author(s):  
Zhan-Jun Long ◽  
Seung-Keon Lee ◽  
Jae-Hun Jeong ◽  
Sung-Jong Lee

2015 ◽  
Vol 59 (02) ◽  
pp. 113-131
Author(s):  
Wei Chai ◽  
Arvid Naess ◽  
Bernt J. Leira

This article presents a four-dimensional (4D) path integration (PI) approach to study the stochastic roll response and reliability of a vessel in random beam seas. Specifically, a 4D Markov dynamic system is established by combing the single-degree-of freedom model used to represent the ship rolling behavior in random beam seas with a second-order linear filter used to approximate the stationary roll excitation moment. On the basis of the Markov property of the coupled 4D dynamic system, the response statistics of roll motion can be obtained by solving the Fokker-Planck equation of the dynamic system via the 4D PI method. The theoretical principle and numerical implementation of the current state of the art 4D PI method are presented. Moreover, the numerical robustness and accuracy of the 4D PI method are evaluated by comparing with the results obtained by the application of Monte Carlo simulation (MCS). The influence of the restoring terms and the damping terms on the stochastic roll response are investigated. Furthermore, based on the well-known Poisson assumption and the response statistics yielded by the 4D PI technique, evaluation of the reliability associated with high-level response is performed. The performance of the Poisson estimate for different levels of external excitations is evaluated by the versatile MCS technique.


1995 ◽  
Vol 32 (03) ◽  
pp. 231-243
Author(s):  
Todd Schauer ◽  
Barry Romberg ◽  
Changben Jiang ◽  
Armin W. Troesch

This paper describes a means by which the capsize risk associated with various fishing vessel operating conditions can be evaluated. Rather than relying on the static restoring moment curve as the primary criteria for vessel safety, modern nonlinear systems analysis is applied to the problem of extreme nonlinear rolling in random beam sea. While the method is quite general and not limited to small vessels, it is illustrated with a specific application involving Native American trap net fishing on the upper Great Lakes. General trap net operations, as practiced by Native American fishermen and women in the Grand Traverse Bay region, are presented in detail. The most significant characteristic of trap net operations is the heel induced during net deployment and net lifting. The increased risk to the vessel, in terms of the increased probability of capsize is quantified for various heel angles and various sea states. A significant advantage of the capsize analysis method presented here is its ability to investigate quickly the effects of many parameters (e.g., trap net line tension, wave height, and/or wave period) on a nonlinear dynamic system without having to resort to extensive simulation studies.


Author(s):  
Eirini Spentza ◽  
Chris Swan

This paper concerns the nonlinear interaction of waves with a floating vessel. A detailed experimental study has been undertaken in a 3-D wave basin, using a scaled model tanker subject to a variety of incident wave conditions. The vessel, which is free to move in heave, pitch and roll, has a draft of 14m (at full-scale) and is subject to a range of incident wave periods propagating at right angles to the side shell of the vessel. Measurements undertaken with and without the vessel in place allow the diffracted-radiated wave field to be identified. The laboratory data indicate that the diffracted-radiated wave pattern varies significantly with the incident wave period. Detailed analysis of the experimental results has identified a hitherto unexpected second-order freely propagating wave harmonic generated due to the presence of the vessel. Given its frequency content and its relatively slow speed of propagation, this harmonic leads to a significant steepening of the wave field around the vessel and therefore has an important role to play in terms of the occurrence of wave slamming. Physical insights are provided concerning the latter and the practical implications of the overall wave-structure interactions are considered.


2012 ◽  
Vol 154 (A2) ◽  

In order to provide data to assist in developing and validating a numerical code to simulate the flooding immediately following damage scale model experiments were conducted on a fully constrained model to investigate the progressive flooding through a complex series of internal compartments within a generic destroyer type hull form. A 3.268 metre long model of a generic destroyer hull form with a simplified, typical internal arrangement was constructed to cover the configuration of greatest interest. A very rapid damage opening scenario was simulated by rupturing a taut membrane covering an opening. The model was instrumented to measure the levels of water and the air pressures in various compartments. In addition, video footage was obtained of the flooding process from both internally and externally of the model. Previous work presented by Macfarlane et al. (2010) showed the results for the unconstrained model. This paper reports on the outcomes from the experimental program where the model was fully constrained in all six degrees of freedom. Firstly, tests were conducted in calm water with damage opening extents ranging from 50% to 100%. When the damage opening was only 50% the rate of rise of water in each of the compartments was only marginally slower than for the 100% damage extent case. Secondly, the test results in calm water were compared against results from tests in regular beam seas. A ‘set-up’ of water inside each of the compartments on the 2nd Deck was found during the wave tests. The result of this is that the mean equilibrium water level in each compartment in the regular beam sea cases is noticeably higher than the equivalent calm water case, particularly for the two compartments on the port side, away from the damage. Finally, analysis of the data from further calm water and beam sea tests suggests that a similar result also occurs when the model is fixed at various non-zero heel angles.


2012 ◽  
Vol 154 (A3) ◽  

To assess the behaviour of large high-speed catamarans in severe seas, extensive full-scale trials were conducted by the U.S. Navy on an INCAT Tasmania built vessel in the North Sea and North Atlantic region. Systematic testing was done for different speeds, sea states and ride control settings at different headings. Collected data has been used to characterise the ship’s motions and seakeeping performance with respect to wave environment, vessel speed and ride control system. Motion response amplitude operators were derived and compared with results from a two-dimensional Green function time-domain strip theory seakeeping prediction method. An increase of motion response with increasing vessel speed and a decrease with the vessel moving from head to beam seas was found. In higher sea states and headings ahead of beam seas an increasing influence of the centre bow on pitch motion damping was found. Significant motion RAO reduction was also found when the ride control system was active. Its effectiveness increased at higher speeds and contributed to heave and pitch motion RAO reduction. Predicted motion magnitudes with the time domain seakeeping code were consistent with the measured motion responses, but maximum heave was predicted at a rather higher frequency than was evident in the trials.


Sign in / Sign up

Export Citation Format

Share Document