In vivo Patterns of Tau Pathology, Amyloid-β Burden, and Neuronal Dysfunction in Clinical Variants of Alzheimer’s Disease

2016 ◽  
Vol 55 (2) ◽  
pp. 465-471 ◽  
Author(s):  
Julian Dronse ◽  
Klaus Fliessbach ◽  
Gérard N. Bischof ◽  
Boris von Reutern ◽  
Jennifer Faber ◽  
...  
2021 ◽  
pp. jnnp-2020-325497
Author(s):  
Ellen Singleton ◽  
Oskar Hansson ◽  
Yolande A. L. Pijnenburg ◽  
Renaud La Joie ◽  
William G Mantyh ◽  
...  

ObjectiveThe clinical phenotype of the rare behavioural variant of Alzheimer’s disease (bvAD) is insufficiently understood. Given the strong clinico-anatomical correlations of tau pathology in AD, we investigated the distribution of tau deposits in bvAD, in-vivo and ex-vivo, using positron emission tomography (PET) and postmortem examination.MethodsFor the tau PET study, seven amyloid-β positive bvAD patients underwent [18F]flortaucipir or [18F]RO948 PET. We converted tau PET uptake values into standardised (W-)scores, adjusting for age, sex and mini mental state examination in a ‘typical’ memory-predominant AD (n=205) group. W-scores were computed within entorhinal, temporoparietal, medial and lateral prefrontal, insular and whole-brain regions-of-interest, frontal-to-entorhinal and frontal-to-parietal ratios and within intrinsic functional connectivity network templates. For the postmortem study, the percentage of AT8 (tau)-positive area in hippocampus CA1, temporal, parietal, frontal and insular cortices were compared between autopsy-confirmed patients with bvAD (n=8) and typical AD (tAD;n=7).ResultsIndividual regional W-scores ≥1.96 (corresponding to p<0.05) were observed in three cases, that is, case #5: medial prefrontal cortex (W=2.13) and anterior default mode network (W=3.79), case #2: lateral prefrontal cortex (W=2.79) and salience network (W=2.77), and case #7: frontal-to-entorhinal ratio (W=2.04). The remaining four cases fell within the normal distributions of the tAD group. Postmortem AT8 staining indicated no group-level regional differences in phosphorylated tau levels between bvAD and tAD (all p>0.05).ConclusionsBoth in-vivo and ex-vivo, patients with bvAD showed heterogeneous distributions of tau pathology. Since key regions involved in behavioural regulation were not consistently disproportionally affected by tau pathology, other factors are more likely driving the clinical phenotype in bvAD.


2020 ◽  
Vol 78 (3) ◽  
pp. 1129-1136
Author(s):  
Meng-Shan Tan ◽  
Yu-Xiang Yang ◽  
Hui-Fu Wang ◽  
Wei Xu ◽  
Chen-Chen Tan ◽  
...  

Background: Amyloid-β (Aβ) plaques and tau neurofibrillary tangles are two neuropathological hallmarks of Alzheimer’s disease (AD), which both can be visualized in vivo using PET radiotracers, opening new opportunities to study disease mechanisms. Objective: Our study investigated 11 non-PET factors in 5 categories (including demographic, clinical, genetic, MRI, and cerebrospinal fluid (CSF) features) possibly affecting PET amyloid and tau status to explore the relationships between amyloid and tau pathology, and whether these features had a different association with amyloid and tau status. Methods: We included 372 nondemented elderly from the Alzheimer’s Disease Neuroimaging Initiative cohort. All underwent PET amyloid and tau analysis simultaneously, and were grouped into amyloid/tau quadrants based on previously established abnormality cut points. We examined the associations of above selected features with PET amyloid and tau status using a multivariable logistic regression model, then explored whether there was an obvious correlation between the significant features and PET amyloid or tau levels. Results: Our results demonstrated that PET amyloid and tau status were differently affected by patient features, and CSF biomarker features provided most significant values associating PET findings. CSF Aβ42/40 was the most important factor affecting amyloid PET status, and negatively correlated with amyloid PET levels. CSF pTau could significantly influence both amyloid and tau PET status. Besides CSF pTau and Aβ42, APOE ɛ4 allele status and Mini-Mental State Examination scores also could influence tau PET status, and significantly correlated with tau PET levels. Conclusion: Our results support that tau pathology possibly affected by Aβ-independent factors, implicating the importance of tau pathology in AD pathogenesis.


2020 ◽  
Author(s):  
Ellen H. Singleton ◽  
Oskar Hansson ◽  
Anke A. Dijkstra ◽  
Renaud La Joie ◽  
William G. Mantyh ◽  
...  

Objective: The clinical phenotype of the rare behavioral variant of Alzheimer's disease (bvAD) is insufficiently understood. Given the strong clinico-anatomical correlations of tau pathology in AD, we investigated the distribution of tau deposits in bvAD, in-vivo and ex-vivo, using PET and postmortem examination. Methods: For the tau PET study, seven amyloid-β positive bvAD patients underwent [18F]flortaucipir or [18F]RO948 PET. We converted tau PET uptake values into standardized (W-)scores, by adjusting for age, sex and MMSE in a "typical" memory-predominant AD (n=205) group. W-scores were computed within entorhinal, temporoparietal, medial and lateral prefrontal, insular and whole-brain regions-of-interest, frontal-to-entorhinal and frontal-to-parietal ratios and within intrinsic functional connectivity network templates. For the postmortem study, the percentage of AT8 (tau)-positive area in hippocampus CA1, temporal, parietal, frontal and insular cortices were compared between autopsy-confirmed bvAD (n=8) and typical AD (n=7) patients. Results: Regional W-scores ≥1.96 (corresponding to p<0.05) were observed in three cases, i.e. case #5: medial prefrontal cortex (W=2.13) and anterior default mode network (W=3.79), case #2: lateral prefrontal cortex (W=2.79) and salience network (W=2.77), and case #7: frontal-to-entorhinal ratio (W=2.04). The remaining four cases fell within the normal distributions of the typical AD group. Postmortem AT8 staining indicated no regional differences in phosphorylated tau levels between bvAD and typical AD (all p>0.05). Conclusion: Both in-vivo and ex-vivo, bvAD patients showed heterogeneous patterns of tau pathology. Since key regions involved in behavioral regulation were not consistently disproportionally affected by tau pathology, other factors are more likely driving the clinical phenotype in bvAD.


Author(s):  
Roger G. Biringer

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders known. Estimates from the Alzheimer’s Association suggest that there are currently 5.8 million Americans living with the disease and that this will rise to 14 million by 2050. Research over the decades has revealed that AD pathology is complex and involves a number of cellular processes. In addition to the well-studied amyloid-β and tau pathology, oxidative damage to lipids and inflammation are also intimately involved. One aspect all these processes share is eicosanoid signaling. Eicosanoids are derived from polyunsaturated fatty acids by enzymatic or non-enzymatic means and serve as short-lived autocrine or paracrine agents. Some of these eicosanoids serve to exacerbate AD pathology while others serve to remediate AD pathology. A thorough understanding of eicosanoid signaling is paramount for understanding the underlying mechanisms and developing potential treatments for AD. In this review, eicosanoid metabolism is examined in terms of in vivo production, sites of production, receptor signaling, non-AD biological functions, and known participation in AD pathology.


2010 ◽  
Vol 6 ◽  
pp. S429-S430
Author(s):  
Nobuyuki Okamura ◽  
Shozo Furumoto ◽  
Katsutoshi Furukawa ◽  
Hiroyuki Arai ◽  
Kazuhiko Yanai ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chu Hsien Lim ◽  
Prameet Kaur ◽  
Emelyne Teo ◽  
Vanessa Yuk Man Lam ◽  
Fangchen Zhu ◽  
...  

The brains of Alzheimer’s disease patients show a decrease in brain mass and a preponderance of extracellular Amyloid-β plaques. These plaques are formed by aggregation of polypeptides that are derived from the Amyloid Precursor Protein (APP). Amyloid-β plaques are thought to play either a direct or an indirect role in disease progression, however the exact role of aggregation and plaque formation in the aetiology of Alzheimer’s disease (AD) is subject to debate as the biological effects of soluble and aggregated Amyloid-β peptides are difficult to separate in vivo. To investigate the consequences of formation of Amyloid-β oligomers in living tissues, we developed a fluorescently tagged, optogenetic Amyloid-β peptide that oligomerizes rapidly in the presence of blue light. We applied this system to the crucial question of how intracellular Amyloid-β oligomers underlie the pathologies of A. We use Drosophila, C. elegans and D. rerio to show that, although both expression and induced oligomerization of Amyloid-β were detrimental to lifespan and healthspan, we were able to separate the metabolic and physical damage caused by light-induced Amyloid-β oligomerization from Amyloid-β expression alone. The physical damage caused by Amyloid-β oligomers also recapitulated the catastrophic tissue loss that is a hallmark of late AD. We show that the lifespan deficit induced by Amyloid-β oligomers was reduced with Li+ treatment. Our results present the first model to separate different aspects of disease progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shady Estfanous ◽  
Kylene P. Daily ◽  
Mostafa Eltobgy ◽  
Nicholas P. Deems ◽  
Midhun N. K. Anne ◽  
...  

Autophagy is a proposed route of amyloid-β (Aβ) clearance by microglia that is halted in Alzheimer’s Disease (AD), though mechanisms underlying this dysfunction remain elusive. Here, primary microglia from adult AD (5xFAD) mice were utilized to demonstrate that 5xFAD microglia fail to degrade Aβ and express low levels of autophagy cargo receptor NBR1. In 5xFAD mouse brains, we show for the first time that AD microglia express elevated levels of microRNA cluster Mirc1/Mir17-92a, which is known to downregulate autophagy proteins. By in situ hybridization in post-mortem AD human tissue sections, we observed that the Mirc1/Mir17-92a cluster member miR-17 is also elevated in human AD microglia, specifically in the vicinity of Aβ deposits, compared to non-disease controls. We show that NBR1 expression is negatively correlated with expression of miR-17 in human AD microglia via immunohistopathologic staining in human AD brain tissue sections. We demonstrate in healthy microglia that autophagy cargo receptor NBR1 is required for Aβ degradation. Inhibiting elevated miR-17 in 5xFAD mouse microglia improves Aβ degradation, autophagy, and NBR1 puncta formation in vitro and improves NBR1 expression in vivo. These findings offer a mechanism behind dysfunctional autophagy in AD microglia which may be useful for therapeutic interventions aiming to improve autophagy function in AD.


2021 ◽  
Vol 84 (6) ◽  
pp. 472-480
Author(s):  
Yulin Luo ◽  
Li Tan ◽  
Joseph Therriault ◽  
Hua Zhang ◽  
Ying Gao ◽  
...  

<b><i>Background:</i></b> Apolipoprotein E (<i>APOE</i>) ε4 is highly associated with mild cognitive impairment (MCI). However, the specific influence of <i>APOE</i> ε4 status on tau pathology and cognitive decline in early MCI (EMCI) and late MCI (LMCI) is poorly understood. Our goal was to evaluate the association of <i>APOE</i> ε4 with cerebrospinal fluid (CSF) tau levels and cognition in EMCI and LMCI patients in the Alzheimer’s Disease Neuroimaging Initiative database, and whether this association was mediated by amyloid-β (Aβ). <b><i>Methods:</i></b> Participants were 269 cognitively normal (CN), 262 EMCI, and 344 LMCI patients. They underwent CSF Aβ42 and tau detection, <i>APOE</i> ε4 genotyping, Mini-Mental State Examination, (MMSE), and Alzheimer’s disease assessment scale (ADAS)-cog assessments. Linear regressions were used to examine the relation of <i>APOE</i> ε4 and CSF tau levels and cognitive scores in persons with and without Aβ deposition (Aβ+ and Aβ−). <b><i>Results:</i></b> The prevalence of <i>APOE</i> ε4 is higher in EMCI and LMCI than in CN (<i>p</i> &#x3c; 0.001 for both), and in LMCI than in EMCI (<i>p</i> = 0.001). <i>APOE</i> ε4 allele was significantly higher in Aβ+ subjects than in Aβ− subjects (<i>p</i> &#x3c; 0.001). Subjects who had a lower CSF Aβ42 level and were <i>APOE</i> ε4-positive experienced higher levels of CSF tau and cognitive scores in EMCI and/or LMCI. <b><i>Conclusions:</i></b> An <i>APOE</i> ε4 allele is associated with increased CSF tau and worse cognition in both EMCI and LMCI, and this association may be mediated by Aβ. We conclude that <i>APOE</i> ε4 may be an important mediator of tau pathology and cognition in the early stages of AD.


2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Elena Rodriguez‐Vieitez ◽  
Victor Montal ◽  
Jorge Sepulcre ◽  
Cristina Lois ◽  
Bernard Hanseeuw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document