cargo receptor
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Javier Manzano-Lopez†* ◽  
Sofia Rodriguez-Gallardo† ◽  
Susana Sabido-Bozo† ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to stabilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2494
Author(s):  
Chenyang Xu ◽  
Tongtong Li ◽  
Jing Lei ◽  
Yina Zhang ◽  
Jiyong Zhou ◽  
...  

Selective autophagy mediates the degradation of cytoplasmic cargos, such as damaged organelles, invading pathogens, and protein aggregates. However, whether it targets double-stranded RNA (dsRNA) of intracellular pathogens is still largely unknown. Here, we show that selective autophagy regulates the degradation of the infectious bursal disease virus (IBDV) dsRNA genome. The amount of dsRNA decreased greatly in cells that overexpressed the autophagy-required protein VPS34 or autophagy cargo receptor SQSTM1, while it increased significantly in SQSTM1 or VPS34 knockout cells or by treating wild-type cells with the autophagy inhibitor chloroquine or wortmannin. Confocal microscopy and structured illumination microscopy showed SQSTM1 colocalized with dsRNA during IBDV infection. A pull-down assay further confirmed the direct binding of SQSTM1 to dsRNA through amino acid sites R139 and K141. Overexpression of SQSTM1 inhibited the replication of IBDV, while knockout of SQSTM1 promoted IBDV replication. Therefore, our findings reveal the role of SQSTM1 in clearing viral dsRNA through selective autophagy, highlighting the antiviral role of autophagy in the removal of the viral genome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linlin Wang ◽  
Hongyang Liu ◽  
Xiaofei Zhang ◽  
Eli Song ◽  
You Wang ◽  
...  

AbstractThe sorting of soluble secretory proteins from the endoplasmic reticulum (ER) to the Golgi complex is mediated by coat protein complex II (COPII) vesicles and thought to required specific ER membrane cargo-receptor proteins. However, these receptors remain largely unknown. Herein, we show that ER to Golgi transfer of vesicular cargo proteins requires WFS1, an ER-associated membrane protein whose loss of function leads to Wolfram syndrome. Mechanistically, WFS1 directly binds to vesicular cargo proteins including proinsulin via its ER luminal C-terminal segment, whereas pathogenic mutations within this region disrupt the interaction. The specific ER export signal encoded in the cytosolic N-terminal segment of WFS1 is recognized by the COPII subunit SEC24, generating mature COPII vesicles that traffic to the Golgi complex. WFS1 deficiency leads to abnormal accumulation of proinsulin in the ER, impeding the proinsulin processing as well as insulin secretion. This work identifies a vesicular cargo receptor for ER export and suggests that impaired peptide hormone transport underlies diabetes resulting from pathogenic WFS1 mutations.


2021 ◽  
Vol 7 (12) ◽  
pp. 997
Author(s):  
Tuo Li ◽  
Jinding Liu ◽  
Qin Wang ◽  
Yang Liu ◽  
Ting Li ◽  
...  

Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs and their targets from Trichoderma guizhouence NJAU 4742 were isolated and identified under solid-state fermentation (SSF) by using rice straw as the sole carbon source at 28 °C and 37 °C, respectively. Results: A critical milRNA, TGA1_S04_31828 (Tr-milRNA1), was highly expressed under heat stress (37 °C) and adaptively regulated lignocellulase secretion. Overexpression of Tr-milRNA1 (OE-Tr-milRNA1) did not affect vegetative growth, but significantly increased lignocellulose utilization under heat stress. Based on the bioinformatics analysis and qPCR validation, a target of Tr-milRNA1 was identified as Trvip36, a lectin-type cargo receptor. The expression of Tr-milRNA1 and Trvip36 showed a divergent trend under SSF when the temperature was increased from 28 °C to 37 °C. In addition, the expression of Trvip36 was suppressed significantly in Tr-milRNA1 overexpression strain (OE-Tr-milRNA1). Compared with the wild type, deletion of Trvip36 (ΔTrvip36) significantly improved the secretion of lignocellulases by reducing the retention of lignocellulases in the ER under heat stress. Conclusions: Tr-milRNA1 from NJAU 4742 improved lignocellulose utilization under heat stress by regulating the expression of the corresponding target gene Trvip36. These findings might open avenues for exploring the mechanism of lignocellulase secretion in filamentous fungi.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu-Jie Chen ◽  
Jeffrey Knupp ◽  
Anoop Arunagiri ◽  
Leena Haataja ◽  
Peter Arvan ◽  
...  

AbstractThe reticulon-3 (RTN3)-driven targeting complex promotes clearance of misfolded prohormones from the endoplasmic reticulum (ER) for lysosomal destruction by ER-phagy. Because RTN3 resides in the cytosolic leaflet of the ER bilayer, the mechanism of selecting misfolded prohormones as ER-phagy cargo on the luminal side of the ER membrane remains unknown. Here we identify the ER transmembrane protein PGRMC1 as an RTN3-binding partner. Via its luminal domain, PGRMC1 captures misfolded prohormones, targeting them for RTN3-dependent ER-phagy. PGRMC1 selects cargos that are smaller than the large size of other reported ER-phagy substrates. Cargos for PGRMC1 include mutant proinsulins that block secretion of wildtype proinsulin through dominant-negative interactions within the ER, causing insulin-deficiency. Chemical perturbation of PGRMC1 partially restores WT insulin storage by preventing ER-phagic degradation of WT and mutant proinsulin. Thus, PGRMC1 acts as a size-selective cargo receptor during RTN3-dependent ER-phagy, and is a potential therapeutic target for diabetes.


2021 ◽  
Author(s):  
Javier Manzano-Lopez†* ◽  
Sofia Rodriguez-Gallardo† ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to stabilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


2021 ◽  
Author(s):  
Javier Manzano-Lopez † ◽  
Sofia Rodriguez-Gallardo † ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to immobilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


2021 ◽  
Author(s):  
Javier Manzano-Lopez † ◽  
Sofia Rodriguez-Gallardo † ◽  
Susana Sabido-Bozo ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to immobilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


2021 ◽  
Author(s):  
Javier Manzano-Lopez † ◽  
Sofia Rodriguez-Gallardo † ◽  
Susana Sabido-Bozo ◽  
Ana Maria Perez-Linero ◽  
Rafael Lucena ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to immobilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shady Estfanous ◽  
Kylene P. Daily ◽  
Mostafa Eltobgy ◽  
Nicholas P. Deems ◽  
Midhun N. K. Anne ◽  
...  

Autophagy is a proposed route of amyloid-β (Aβ) clearance by microglia that is halted in Alzheimer’s Disease (AD), though mechanisms underlying this dysfunction remain elusive. Here, primary microglia from adult AD (5xFAD) mice were utilized to demonstrate that 5xFAD microglia fail to degrade Aβ and express low levels of autophagy cargo receptor NBR1. In 5xFAD mouse brains, we show for the first time that AD microglia express elevated levels of microRNA cluster Mirc1/Mir17-92a, which is known to downregulate autophagy proteins. By in situ hybridization in post-mortem AD human tissue sections, we observed that the Mirc1/Mir17-92a cluster member miR-17 is also elevated in human AD microglia, specifically in the vicinity of Aβ deposits, compared to non-disease controls. We show that NBR1 expression is negatively correlated with expression of miR-17 in human AD microglia via immunohistopathologic staining in human AD brain tissue sections. We demonstrate in healthy microglia that autophagy cargo receptor NBR1 is required for Aβ degradation. Inhibiting elevated miR-17 in 5xFAD mouse microglia improves Aβ degradation, autophagy, and NBR1 puncta formation in vitro and improves NBR1 expression in vivo. These findings offer a mechanism behind dysfunctional autophagy in AD microglia which may be useful for therapeutic interventions aiming to improve autophagy function in AD.


Sign in / Sign up

Export Citation Format

Share Document