Investigation on the design of magnetic spring-beam vibration isolator with negative stiffness characteristic

2016 ◽  
Vol 52 (3-4) ◽  
pp. 1321-1329
Author(s):  
Guangxu Dong ◽  
Xinong Zhang ◽  
Yajun Luo ◽  
Yahong Zhang
2019 ◽  
Vol 25 (19-20) ◽  
pp. 2667-2677 ◽  
Author(s):  
Zhenhua Zhou ◽  
Shuhan Chen ◽  
Dun Xia ◽  
Jianjun He ◽  
Peng Zhang

A negative stiffness element is always employed to generate high-static–low-dynamic stiffness characteristic of the vibration isolator, reduce the resonance frequency of the isolator, and improve the vibration isolation performance under low and ultra-low frequency excitation. In this paper, a new compact negative stiffness permanent magnetic spring (NSPMS) that is composed of two axial-magnetized permanent magnetic rings is proposed. An analytical expression of magnetic negative stiffness of the NSPMS is deduced by using the Coulombian model. After analyzing the effect of air-gap width, air-gap position, height difference between the inner ring and outer ring on the negative stiffness characteristic, a design procedure is proposed to realize the negative stiffness characteristic with a global minimum linear component and uniformity stiffness near the equilibrium position. Finally, an experimental prototype is developed to validate the effectiveness of the NSPMS. The experimental results show that combining a vibration isolator with the NSPMS in parallel can lower the natural frequency and improve the isolation performance of the isolator.


2013 ◽  
Vol 27 (3) ◽  
pp. 813-824 ◽  
Author(s):  
Qiang Li ◽  
Yu Zhu ◽  
Dengfeng Xu ◽  
Jinchun Hu ◽  
Wei Min ◽  
...  

2021 ◽  
pp. 107754632199052
Author(s):  
Zhenhua Zhou ◽  
Minrui Zhou ◽  
Zhihui Dai ◽  
Xin Liu ◽  
Zhanhui Li

Vibration isolator with high-static low-dynamic stiffness property has been researched extensively, but the isolator’s stability and performance will be deteriorated with the operation point variation. In this article, a vibration isolator that operation point can be variable was proposed, and it was constructed by combining a coil spring and flexible leaf springs with a negative stiffness magnet spring in parallel. Unlike previous studies, this article focuses on the realization of the high-static low-dynamic stiffness characteristic of the isolator, and the operation point of the vibration isolator can be varied in a certain range. The effects of configuration parameters on the negative stiffness are investigated in detail. Furthermore, the designing procedure to realize the linear negative stiffness with the expected magnitude and range was also developed. A prototype was installed and the vibration transmissibility of the system at different operation points was measured, the experimental results indicated that the isolator can be kept stable in different operation points, and the performance does not deteriorate with the variation of the operation point. The effectiveness of the designing procedure of the realization of linear negative stiffness with the expected magnitude and range and the variable of the operation point of the isolator was validated.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yuhu Shan ◽  
Wenjiang Wu ◽  
Xuedong Chen

In the ultraprecision vibration isolation systems, it is desirable for the isolator to have a larger load bearing capacity and a broader isolation bandwidth simultaneously. Generally, pneumatic spring can bear large load and achieve relatively low natural frequency by enlarging its chamber volume. However, the oversized isolator is inconvenient to use and might cause instability. To reduce the size, a miniaturized pneumatic vibration isolator (MPVI) with high-static-low-dynamic stiffness (HSLDS) is developed in this paper. The volume of proposed isolator is minimized by a compact structure design that combines two magnetic rings in parallel with the pneumatic spring. The two magnetic rings are arranged in the repulsive configuration and can be mounted into the chamber to provide the negative stiffness. Then dynamic model of the developed MPVI is built and the isolation performances are analyzed. Finally, experiments on the isolator with and without the magnetic rings are conducted. The final experimental results are consistent with the dynamical model and verify the effectiveness of the developed vibration isolator.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sachiko Ishida ◽  
Kohki Suzuki ◽  
Haruo Shimosaka

We present a prototype vibration isolator whose design is inspired by origami-based foldable cylinders with torsional buckling patterns. The vibration isolator works as a nonlinear spring that has quasi-zero spring stiffness in a given frequency region, where it does not transmit vibration in theory. We evaluate the performance of the prototype vibration isolator through excitation experiments via the use of harmonic oscillations and seismic-wave simulations of the Tohoku-Pacific Ocean and Kobe earthquakes. The results indicate that the isolator with the current specification is able to suppress the transmission of vibrations with frequencies of over 6 Hz. The functionality and constraints of the isolator are also clarified. It has been known that origami-based foldable cylinders with torsional buckling patterns provide bistable folding motions under given conditions. In a previous study, we proposed a vibration isolator utilizing the bistability characteristics and numerically confirmed the device's validity as a vibration isolator. Here, we attempt prototyping the isolator with the use of versatile metallic components and experimentally evaluate the isolation performance.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Kai Meng ◽  
Yi Sun ◽  
Huayan Pu ◽  
Jun Luo ◽  
Shujin Yuan ◽  
...  

In this study, a novel vibration isolator is presented. The presented isolator possesses the controllable stiffness and can be employed in vibration isolation at a low-resonance frequency. The controllable stiffness of the isolator is obtained by manipulating the negative stiffness-based current in a system with a positive and a negative stiffness in parallel. By using an electromagnetic device consisting of permanent magnetic rings and coils, the designed isolator shows that the stiffness can be manipulated as needed and the operational stiffness range is large in vibration isolation. We experimentally demonstrate that the modeling of controllable stiffness and the approximation of the negative stiffness expressions are effective for controlling the resonance frequency and the transmissibility of the vibration isolation system, enhancing applications such as warship stealth technology, vehicles suspension system, and active vibration isolator.


Sign in / Sign up

Export Citation Format

Share Document