Nonlinear dynamic and electromagnetic interference coupled-field analysis in a semi-active suspension system with magneto-rheological damper

2018 ◽  
Vol 58 (1) ◽  
pp. 41-55 ◽  
Author(s):  
Hailong Zhang ◽  
Jian Liu ◽  
Zhang Tinghui ◽  
Enrong Wang ◽  
Subhash Rakheja ◽  
...  
2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.


Author(s):  
Amit Shukla ◽  
Jeong Hoi Koo

Nonlinear active suspension systems are very popular in the automotive applications. They include nonlinear stiffness and nonlinear damping elements. One of the types of damping element is a magneto-rheological fluid based damper which is receiving increased attention in the applications to the automotive suspension systems. Latest trends in suspension systems also include electronically controlled systems which provide advanced system performance and integration with various processes to improve vehicle ride comfort, handling and stability. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. These control bifurcations are different from the classical bifurcation where qualitative stability of the equilibrium point changes. Any nonlinear control system can also exhibit control bifurcations. In this paper, control bifurcations of the nonlinear active suspension system, modeled as a two degree of freedom system, are analyzed. It is shown that the system looses stability via Hopf bifurcation. Parametric control bifurcation analysis is conducted and results presented to highlight the significance of the design of control system for nonlinear active suspension system. A framework for the design of feedback using the parametric analysis for the control bifurcations is proposed and illustrated for the nonlinear active suspension system.


Author(s):  
Amit Shukla

Design of active suspension systems is well known, however the notion of control bifurcations for the design of such systems has been introduced recently. A nonlinear active suspension system consisting of a magneto-rheological damper is analyzed in this work. It is well known that a parameterized nonlinear differential equation can have multiple equilibria as the parameter is varied. A local bifurcation of a parameterized nonlinear system typically happens because some eigenvalues of the parameterized linear approximating differential equation cross the imaginary axis and there is a change in stability of the equilibrium. The qualitative change in the equilibrium point can be characterized by investigating the projection of the flow on the center manifold. A control bifurcation of a nonlinear system typically occurs when its linear approximation loses stabilizability. In this work the control bifurcations of a magneto-rheological fluid based active suspension system is analyzed. Some parametric results are presented with suggestions on how to design nonlinear control based on the parametric control bifurcation analysis as applied to the design of an active suspension system.


Author(s):  
Albert C. J. Luo ◽  
Arun Rajendran

Periodic motions in a hysteretically damped, semi-active suspension system are investigated. The Magneto-Rheological damping varying with relative velocity is modeled through a piecewise-linear model. The theory for discontinuous dynamical systems is employed to determine the grazing motions in such a system, and the mapping technique is used to develop the mapping structures of periodic motions. The periodic motions are predicted analytically and verified numerically. The stability and bifurcation analyses of such periodic motions are performed, and the parameters for all possible motions are developed. This model is applicable for the semi-active suspension system with the Magneto-Rheological damper in automobiles. The further investigation on the Magneto-Rheological damping with full nonlinearity should be completed.


2020 ◽  
Vol 31 (9) ◽  
pp. 1157-1170 ◽  
Author(s):  
Van Ngoc Mai ◽  
Dal-Seong Yoon ◽  
Seung-Bok Choi ◽  
Gi-Woo Kim

This article presents vibration control of a semi-active quarter-car suspension system equipped with a magneto-rheological damper that provides the physical constraint of a damping force. In this study, model predictive control was designed to handle the constraints of control input (i.e. the limited damping force). The explicit solution of model predictive control was computed using multi-parametric programming to reduce the computational time for real-time implementation and then adopted in the semi-active suspension system. The control performance of model predictive control was compared with that of a clipped linear-quadratic optimal controller, where the damping force was bound using a standard saturation function. Two types of road conditions (bump and random excitation) were applied to the suspension system, and the vibration control performance was evaluated through both simulations and experiments.


2013 ◽  
Vol 284-287 ◽  
pp. 1754-1758
Author(s):  
Yao Jung Shiao ◽  
Quang Anh Nguyen ◽  
Chun Chi Lai

Automotive industry is growing widely and rapidly by the involving of multi-fields not only mechanical engineering but also electrical and electronic engineering, material and more. As a key system in vehicles, suspension system and its control have been studied for a long time. A well-controlled suspension system provides high vehicle handling, good drivability and high comfort for passengers, and good isolation from road noise and vibration. To enhance comfort and handling of light-weight vehicles, semi-active suspension system is considered and proposed by numbers of papers. A semi-active suspension features small system space, low complexity and easy maintenance. Therefore, it is suitable for small compact car body known as light vehicles. This paper focuses on the analysis and control of a semi-active suspension for light-weight vehicles. Models of a quarter-car suspension with air spring and magneto rheological damper were built. Because components in the system involve nonlinear dynamic characteristics, a self-tuning Fuzzy logic controller was designed. Simulation results showed that the designed suspension system with its controller had good performance in vibration suppression.


Sign in / Sign up

Export Citation Format

Share Document