Line source diffraction by double strips with different fractional boundary conditions

Author(s):  
Kamil Karaçuha ◽  
Vasil Tabatadze ◽  
Eldar Ismailovich Veliyev

In this study, the cylindrical wave diffraction by double strips with different lengths and boundary conditions are investigated. The scattered fields are found by the Numerical-Analytical Approach. The double-strip structure satisfies integral boundary conditions which are the generalization of Dirichlet and Neumann boundary conditions. The electric field, current distribution, and Total Radar Cross Sections are investigated. The results are compared with other methods and previous findings such as the Method of Moments and Physical Optics. The theoretical and numerical analyses indicate that the fractional order, the position of the line source have tremendous effects on the total-field distributions.

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 174
Author(s):  
Chanakarn Kiataramkul ◽  
Weera Yukunthorn ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we initiate the study of existence of solutions for a fractional differential system which contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives, complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary conditions for the existence and uniqueness of solutions of the considered system, by using standard fixed point theorems, such as Banach contraction mapping principle and Leray–Schauder alternative. Numerical examples illustrating the obtained results are also presented.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


1992 ◽  
Vol 70 (9) ◽  
pp. 696-705 ◽  
Author(s):  
A-K. Hamid ◽  
I. R. Ciric ◽  
M. Hamid

The problem of plane electromagnetic wave scattering by two concentrically layered dielectric spheres is investigated analytically using the modal expansion method. Two different solutions to this problem are obtained. In the first solution the boundary conditions are satisfied simultaneously at all spherical interfaces, while in the second solution an iterative approach is used and the boundary conditions are satisfied successively for each iteration. To impose the boundary conditions at the outer surface of the spheres, the translation addition theorem of the spherical vector wave functions is employed to express the scattered fields by one sphere in the coordiante system of the other sphere. Numerical results for the bistatic and back-scattering cross sections are presented graphically for various sphere sizes, layer thicknesses and permittivities, and angles of incidence.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Xiaoyou Liu ◽  
Zhenhai Liu

This paper is concerned with a class of fractional differential inclusions whose multivalued term depends on lower-order fractional derivative with fractional (non)separated boundary conditions. The cases of convex-valued and non-convex-valued right-hand sides are considered. Some existence results are obtained by using standard fixed point theorems. A possible generalization for the inclusion problem with integral boundary conditions is also discussed. Examples are given to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document