Bidirectional cell tests on non-grouted and grouted large-diameter bored piles

2015 ◽  
Vol 2 (3,4) ◽  
pp. 105-117 ◽  
Author(s):  
Minh Hai Nguyen ◽  
Bengt H. Fellenius

Abstract The 37-storey apartment buildings of the Everrich II project in HoChiMinh City, Vietnam was designed to be supported on a piled foundation consisting of bored piles assigned a 22-MN working load per pile. The foundation design included performing bidirectional-cell, static loading tests on four test piles. The soil profile consisted of organic soft clay to about 28 m depth followed by a thick deposit of sandy silt and silty sand with a density that gradually increased with depth from compact to dense, becoming very dense at 65 m depth. In March 2010, the test piles, one 1.5-m diameter pile and three 2.0-m diameter piles, were installed to 80 m through 85 m depth and constructed using bucket drill technique with bentonite slurry and a casing advanced ahead of the hole. The bidirectional-cell assemblies were installed at 10 m through 20 m above the pile toes. The piles were instrumented with pairs of diametrically opposed vibrating wire strain-gages at three to four levels below and six to seven levels above the respective cell levels. After completed concreting, the shaft grouting was carried out throughout a 20 m length above the pile toe for the 1.5-m diameter pile and for one of the 2.0-m diameter piles. The static loading tests were performed about 34 through 44 days after the piles had been concreted. The analysis of strain-gage records indicated an average Young’s modulus value of about 25 GPa for the nominal crosssections of the piles. The average unit grouted shaft resistances on the nominal pile diameters were about two to three times larger than the resistance along the non-grouted lengths. The measured load distribution of maximum mobilized shaft resistances corresponded to effective stress proportionality coefficients, ß, of about 0.2 through 0.3. The ultimate shaft resistance for the pile lengths below the bidirectional cells reached an ultimate value after about 8 to 10 mm movement, whereafter the load-movement was plastic. The pile toe stress-movement responses to toe stiffness were soft with no tendency toward an ultimate value.

Author(s):  
Askar Zh. Zhussupbekov ◽  
Yoshinori Iwasaki ◽  
Abdulla R. Omarov

At the present time, in Astana city is going on works by construction public transport system LRT (Light Railway Transport). LRT is an overhead road with two railway lines. The first stage of construction is including construction of overhead road (bridge) with 22,4 km length and 18 stations. The foundation of bridge is the bored piles with cross-section 1.0HL5 m and length 8-КЗ 5 m. In these conditions, very important to control integrity of concrete body of each bored piles. For checking integrity- applying two methods - Low Strain Method and Cross-Hole Sonic Logging. The aim of this paper is to discuss the advantages and disadvantages of each method using the examples of a real application. The article presents loading tests of large diameter and deep boring piles on the construction site in new capital city of the Republic of Kazakhstan. Finally, some recommendations for testmg methods suitable for problematical ground conditions of Kazakhstan are introduced. Traditionally, pile load tests in Kazakhstan are carried out using static loading test methods. Static pile loading test is the most reliable method to obtain the load-settlement relation of piles. Results of static pile tests using the static compression loading test (by ASTM). static loading test (by GOST) and bi-direction static loading test (by ASTM) methods are presented in this paper. Experienced bored piles with length of 31.5 m. diameter 1000 mm. Hereafter the results of underground testmg by the piles with the methods of vertical static tests of SLT. BDSLT and SCLT are presented, which had been made on Expo 2017 projects, buildings of Pavilion m Astana. Kazakhstan.


2012 ◽  
Vol 170-173 ◽  
pp. 227-231 ◽  
Author(s):  
Rui Kun Zhang ◽  
Ming Lei Shi ◽  
Hao Zhang ◽  
Jin Wang

The pile-base post-grouting technology can solve the bottom slime and the shaft mud-cake which are the two principal deterioration factors of slurry bored piles. The enhancement effect of pile-base post-grouting was analyzed through the comparison static loading tests and summarization of literature data. The hysteretic nature of the enhancement effect was revealed and the abnormal phenomena was analyzed that the initial loading stiffness of deep pile with post-grouting was lower compared with the pile without post-grouting. The settlement-reducing effect of post-grouting is limited at serviceability limit states and the additional settlement effect of end resistance enhancement of pile with post-grouting is proposed.


2012 ◽  
Vol 594-597 ◽  
pp. 320-326 ◽  
Author(s):  
Rui Kun Zhang ◽  
Ming Lei Shi ◽  
Jin Wang

The behavior of single axially loaded large-diameter and super-long bored piles have large difference to single small diameter short piles. The article analyzes the load transfer characteristic of single axially loaded large-diameter and super-long bored piles in deep soft clay in the Yangtze River Delta region. And the hybrid method of finite element analysis of rod structure coupling with the shear displacement method for single pile was utilized to simulating and predicting the single pile performance. It is verified that the settlement calculation hybrid method in this paper is reliable.


2017 ◽  
Vol 36 (1) ◽  
pp. 13-26
Author(s):  
V. H. L. Bach ◽  
H. M. Nguyen ◽  
A. J. Puppala ◽  
C. M. Nguyen ◽  
U. D. Patil

2001 ◽  
Vol 50 (7) ◽  
pp. 745-750
Author(s):  
Masaki HARADA ◽  
Tomoyuki HAYASHI ◽  
Masahiko KARUBE ◽  
Akimitsu IIDA ◽  
Kohei KOMATSU

Sign in / Sign up

Export Citation Format

Share Document