Inverse DEA in two-stage systems based on allocative efficiency

2021 ◽  
Vol 40 (1) ◽  
pp. 591-603
Author(s):  
Zahra Shiri Daryani ◽  
Ghasem Tohidi ◽  
Behrouz Daneshian ◽  
Shabnam Razavyan ◽  
Farhad Hosseinzadeh Lotfi

Inputs and outputs of Decision Making Units (DMUs) are estimated by the Inverse Data Envelopment Analysis (InvDEA) models, while their relative efficiency scores remain unchanged. But, in some cases, cost/price information of the inputs and outputs are available. This paper employs the input and output cost/price information, including the generalized InvDEA concept in two-stage structures. To this end, it proposes a four-stage method to deal with the InvDEA concept, for estimating the inputs and outputs of the DMUs with a two-stage network structure method, while the allocative efficiency scores of all the units remain stable. Eventually, an empirical example is rendered to illustrate the competence of the method which is presented.

Author(s):  
somayeh khezri ◽  
Akram Dehnokhalaji ◽  
Farhad Hosseinzadeh Lotfi

One of interesting subjects in Data Envelopment Analysis (DEA) is estimation of congestion of Decision Making Units (DMUs). Congestion is evidenced when decreases (increases) in some inputs re- sult in increases (decreases) in some outputs without worsening (im- proving) any other input/output. Most of the existing methods for measuring the congestion of DMUs utilize the traditional de nition of congestion and assume that inputs and outputs change with the same proportion. Therefore, the important question that arises is whether congestion will occur or not if the decision maker (DM) increases or de- creases the inputs dis-proportionally. This means that, the traditional de nition of congestion in DEA may be unable to measure the con- gestion of units with multiple inputs and outputs. This paper focuses on the directional congestion and proposes methods for recognizing the directional congestion using DEA models. To do this, we consider two di erent scenarios: (i) just the input direction is available. (ii) none of the input and output directions are available. For each scenario, we propose a method consists in systems of inequalities or linear pro- gramming problems for estimation of the directional congestion. The validity of the proposed methods are demonstrated utilizing two nu- merical examples.


2011 ◽  
Vol 50 (4II) ◽  
pp. 685-698
Author(s):  
Samina Khalil

This paper aims at measuring the relative efficiency of the most polluting industry in terms of water pollution in Pakistan. The textile processing is country‘s leading sub sector in textile manufacturing with regard to value added production, export, employment, and foreign exchange earnings. The data envelopment analysis technique is employed to estimate the relative efficiency of decision making units that uses several inputs to produce desirable and undesirable outputs. The efficiency scores of all manufacturing units exhibit the environmental consciousness of few producers is which may be due to state regulations to control pollution but overall the situation is far from satisfactory. Effective measures and instruments are still needed to check the rising pollution levels in water resources discharged by textile processing industry of the country. JEL classification: L67, Q53 Keywords: Data Envelopment Analysis (DEA), Decision Making Unit (DMU), Relative Efficiency, Undesirable Output


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chao Lu ◽  
Haifang Cheng

Data envelopment analysis (DEA) is a nonparametric method for evaluating the relative efficiency of a set of decision-making units (DMUs) with multiple inputs and outputs. As an extension of the DEA, a multiplicative two-stage DEA model has been widely used to measure the efficiencies of two-stage systems, where the first stage uses inputs to produce the outputs, and the second stage then uses the first-stage outputs as inputs to generate its own outputs. The main deficiency of the multiplicative two-stage DEA model is that the decomposition of the overall efficiency may not be unique because of the presence of alternate optima. To remove the problem of the flexible decomposition, in this paper, we maximize the sum of the two-stage efficiencies and simultaneously maximize the two-stage efficiencies as secondary goals in the multiplicative two-stage DEA model to select the decomposition of the overall efficiency from the flexible decompositions, respectively. The proposed models are applied to evaluate the performance of 10 branches of China Construction Bank, and the results are compared with the results of the existing models.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Nafiseh Javaherian ◽  
Ali Hamzehee ◽  
Hossein Sayyadi Tooranloo

Data envelopment analysis (DEA) is a powerful tool for evaluating the efficiency of decision-making units for ranking and comparison purposes and to differentiate efficient and inefficient units. Classic DEA models are ill-suited for the problems where decision-making units consist of multiple stages with intermediate products and those where inputs and outputs are imprecise or nondeterministic, which is not uncommon in the real world. This paper presents a new DEA model for evaluating the efficiency of decision-making units with two-stage structures and triangular intuitionistic fuzzy data. The paper first introduces two-stage DEA models, then explains how these models can be modified with intuitionistic fuzzy coefficients, and finally describes how arithmetic operators for intuitionistic fuzzy numbers can be used for a conversion into crisp two-stage structures. In the end, the proposed method is used to solve an illustrative numerical example.


Author(s):  
Chandra Sekhar Patro

In the present competitive business environment, it is essential for the management of any organisation to take wise decisions regarding supplier evaluation. It plays a vital role in establishing an effective supply chain for any organisation. Most of the experts agreed that there is no one best way to evaluate the suppliers and different organizations use different approaches for evaluating supplier efficiency. The overall objective of any approach is to reduce purchase risk and maximize overall value to the purchaser. In this paper Data Envelopment Analysis (DEA) technique is developed to evaluate the supplier efficiency for an organisation. DEA is a multifactor productivity technique to measure the relative efficiency of the decision making units. The super efficiency method of DEA provides a way, which indicates the extent to which the efficient suppliers exceed the efficient frontier formed by other efficient suppliers. A case study is undertaken to evaluate the supplier performance and efficiency using DEA approach.


Author(s):  
V. Prakash ◽  
J. Rajesh ◽  
M. Thilagam

Data envelopment analysis (DEA) is a method of analyzing the relative efficiency of similar types of organizations known as decision making units (DMU’s). In this paper, DEA model is applied to evaluate the relative technical efficiency of state road transport undertakings (SRTU’s) in India during the period 2011-2012. The authors have considered thirty-four SRTU’s functioning in India. The variables chosen to characteristic production units are the number of fleet held, staff strength and fuel efficiency as inputs and Passengers carried as output. The BCC model is input- oriented allowing for variable returns to scale (VRS), units are ranked and the projection analyses are given.


Author(s):  
Mohammad Amin Zare ◽  
Mohammad Taghi Taghavi Fard ◽  
Payam Hanafizadeh

This article proposes a model to make an assessment of efficiency in Information Technology (IT) outsourcing in research centers through data envelopment analysis (DEA). In this research input and output variables of DEA model for assessment of IT outsourcing efficiency distinguished. The decision-making units (DMUs) include 36 research centers in Iran. Expenses and capabilities of contractors represent the inputs and the satisfaction of users, risks, and quality constitute the outputs. In order to calculate the input and output values, a questionnaire has been conducted to DMUs. Afterwards, BCC model has facilitated the calculation of the efficiency of the DMUs and classifies efficient and inefficient units. In addition, Anderson Peterson's model is used for ranking efficient DMUs. This research has brought us to the conclusion that the variables of risk and quality account for the biggest shares in efficiency improvement of non-efficient DMUs.


Sign in / Sign up

Export Citation Format

Share Document