Combining user-end and item-end knowledge graph learning for personalized recommendation

2021 ◽  
pp. 1-13
Author(s):  
Tianlong Gu ◽  
Haohong Liang ◽  
Chenzhong Bin ◽  
Liang Chang

How to accurately model user preferences based on historical user behaviour and auxiliary information is of great importance in personalized recommendation tasks. Among all types of auxiliary information, knowledge graphs (KGs) are an emerging type of auxiliary information with nodes and edges that contain rich structural information and semantic information. Many studies prove that incorporating KG into personalized recommendation tasks can effectively improve the performance, rationality and interpretability of recommendations. However, existing methods either explore the independent meta-paths for user-item pairs in KGs or use a graph convolution network on all KGs to obtain embeddings for users and items separately. Although both types of methods have respective effects, the former cannot fully capture the structural information of user-item pairs in KGs, while the latter ignores the mutual effect between the target user and item during the embedding learning process. To alleviate the shortcomings of these methods, we design a graph convolution-based recommendation model called Combining User-end and Item-end Knowledge Graph Learning (CUIKG), which aims to capture the relevance between users’ personalized preferences and items by jointly mining the associated attribute information in their respective KG. Specifically, we describe user embedding from a user KG and then introduce user embedding, which contains the user profile into the item KG, to describe item embedding with the method of Graph Convolution Network. Finally, we predict user preference probability for a given item via multilayer perception. CUIKG describes the connection between user-end KG and item-end KG, and mines the structural and semantic information present in KG. Experimental results with two real-world datasets demonstrate the superiority of the proposed method over existing methods.

2021 ◽  
Author(s):  
Zhisheng Yang ◽  
Jinyong Cheng

Abstract In recommendation algorithms, data sparsity and cold start problems are always inevitable. In order to solve such problems, researchers apply auxiliary information to recommendation algorithms to mine and obtain more potential information through users' historical records and then improve recommendation performance. This paper proposes a model ST_RippleNet, which combines knowledge graph with deep learning. In this model, users' potential interests are mined in the knowledge graph to stimulate the propagation of users' preferences on the set of knowledge entities. In the propagation of preferences, we adopt a triple-based multi-layer attention mechanism, and the distribution of users' preferences for candidate items formed by users' historical click information is used to predict the final click probability. In ST_RippleNet model, music data set is added to the original movie and book data set, and the improved loss function is applied to the model, which is optimized by RMSProp optimizer. Finally, tanh function is added to predict click probability to improve recommendation performance. Compared with the current mainstream recommendation methods, ST_RippleNet recommendation algorithm has very good performance in AUC and ACC, and has substantial improvement in movie, book and music recommendation.


2022 ◽  
Vol 40 (2) ◽  
pp. 1-23
Author(s):  
Zhiqiang Tian ◽  
Yezheng Liu ◽  
Jianshan Sun ◽  
Yuanchun Jiang ◽  
Mingyue Zhu

Personalized recommendation has become more and more important for users to quickly find relevant items. The key issue of the recommender system is how to model user preferences. Previous work mostly employed user historical data to learn users’ preferences, but faced with the data sparsity problem. The prevalence of online social networks promotes increasing online discussion groups, and users in the same group often have similar interests and preferences. Therefore, it is necessary to integrate group information for personalized recommendation. The existing work on group-information-enhanced recommender systems mainly relies on the item information related to the group, which is not expressive enough to capture the complicated preference dependency relationships between group users and the target user. In this article, we solve the problem with the graph neural networks. Specifically, the relationship between users and items, the item preferences of groups, and the groups that users participate in are constructed as bipartite graphs, respectively, and the user preferences for items are learned end to end through the graph neural network. The experimental results on the Last.fm and Douban Movie datasets show that considering group preferences can improve the recommendation performance and demonstrate the superiority on sparse users compared


2021 ◽  
Vol 11 (3) ◽  
pp. 1064
Author(s):  
Jenq-Haur Wang ◽  
Yen-Tsang Wu ◽  
Long Wang

In social networks, users can easily share information and express their opinions. Given the huge amount of data posted by many users, it is difficult to search for relevant information. In addition to individual posts, it would be useful if we can recommend groups of people with similar interests. Past studies on user preference learning focused on single-modal features such as review contents or demographic information of users. However, such information is usually not easy to obtain in most social media without explicit user feedback. In this paper, we propose a multimodal feature fusion approach to implicit user preference prediction which combines text and image features from user posts for recommending similar users in social media. First, we use the convolutional neural network (CNN) and TextCNN models to extract image and text features, respectively. Then, these features are combined using early and late fusion methods as a representation of user preferences. Lastly, a list of users with the most similar preferences are recommended. The experimental results on real-world Instagram data show that the best performance can be achieved when we apply late fusion of individual classification results for images and texts, with the best average top-k accuracy of 0.491. This validates the effectiveness of utilizing deep learning methods for fusing multimodal features to represent social user preferences. Further investigation is needed to verify the performance in different types of social media.


2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Jun Li ◽  
Qiang Dong ◽  
Yan Fu

As the rapid development of mobile Internet and smart devices, more and more online content providers begin to collect the preferences of their customers through various apps on mobile devices. These preferences could be largely reflected by the ratings on the online items with explicit scores. Both of positive and negative ratings are helpful for recommender systems to provide relevant items to a target user. Based on the empirical analysis of three real-world movie-rating data sets, we observe that users’ rating criterions change over time, and past positive and negative ratings have different influences on users’ future preferences. Given this, we propose a recommendation model on a session-based temporal graph, considering the difference of long- and short-term preferences, and the different temporal effect of positive and negative ratings. The extensive experiment results validate the significant accuracy improvement of our proposed model compared with the state-of-the-art methods.


2021 ◽  
pp. 1063293X2110195
Author(s):  
Ying Yu ◽  
Shan Li ◽  
Jing Ma

Selecting the most efficient from several functionally equivalent services remains an ongoing challenge. Most manufacturing service selection methods regard static quality of service (QoS) as a major competitiveness factor. However, adaptations are difficult to achieve when variable network environment has significant impact on QoS performance stabilization in complex task processes. Therefore, dynamic temporal QoS values rather than fixed values are gaining ground for service evaluation. User preferences play an important role when service demanders select personalized services, and this aspect has been poorly investigated for temporal QoS-aware cloud manufacturing (CMfg) service selection methods. Furthermore, it is impractical to acquire all temporal QoS values, which affects evaluation validity. Therefore, this paper proposes a time-aware CMfg service selection approach to address these issues. The proposed approach first develops an unknown-QoS prediction model by utilizing similarity features from temporal QoS values. The model considers QoS attributes and service candidates integrally, helping to predict multidimensional QoS values accurately and easily. Overall QoS is then evaluated using a proposed temporal QoS measuring algorithm which can self-adapt to user preferences. Specifically, we employ the temporal QoS conflict feature to overcome one-sided user preferences, which has been largely overlooked previously. Experimental results confirmed that the proposed approach outperformed classical time series prediction methods, and can also find better service by reducing user preference misjudgments.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042044
Author(s):  
Zuhua Dai ◽  
Yuanyuan Liu ◽  
Shilong Di ◽  
Qi Fan

Abstract Aspect level sentiment analysis belongs to fine-grained sentiment analysis, w hich has caused extensive research in academic circles in recent years. For this task, th e recurrent neural network (RNN) model is usually used for feature extraction, but the model cannot effectively obtain the structural information of the text. Recent studies h ave begun to use the graph convolutional network (GCN) to model the syntactic depen dency tree of the text to solve this problem. For short text data, the text information is not enough to accurately determine the emotional polarity of the aspect words, and the knowledge graph is not effectively used as external knowledge that can enrich the sem antic information. In order to solve the above problems, this paper proposes a graph co nvolutional neural network (GCN) model that can process syntactic information, know ledge graphs and text semantic information. The model works on the “syntax-knowled ge” graph to extract syntactic information and common sense information at the same t ime. Compared with the latest model, the model in this paper can effectively improve t he accuracy of aspect-level sentiment classification on two datasets.


Sign in / Sign up

Export Citation Format

Share Document