On 2-partition dimension of the circulant graphs

2021 ◽  
pp. 1-11
Author(s):  
Asim Nadeem ◽  
Agha Kashif ◽  
Sohail Zafar ◽  
Zohaib Zahid

The partition dimension is a variant of metric dimension in graphs. It has arising applications in the fields of network designing, robot navigation, pattern recognition and image processing. Let G (V (G) , E (G)) be a connected graph and Γ = {P1, P2, …, Pm} be an ordered m-partition of V (G). The partition representation of vertex v with respect to Γ is an m-vector r (v|Γ) = (d (v, P1) , d (v, P2) , …, d (v, Pm)), where d (v, P) = min {d (v, x) |x ∈ P} is the distance between v and P. If the m-vectors r (v|Γ) differ in at least 2 positions for all v ∈ V (G), then the m-partition is called a 2-partition generator of G. A 2-partition generator of G with minimum cardinality is called a 2-partition basis of G and its cardinality is known as the 2-partition dimension of G. Circulant graphs outperform other network topologies due to their low message delay, high connectivity and survivability, therefore are widely used in telecommunication networks, computer networks, parallel processing systems and social networks. In this paper, we computed partition dimension of circulant graphs Cn (1, 2) for n ≡ 2 (mod 4), n ≥ 18 and hence corrected the result given by Salman et al. [Acta Math. Sin. Engl. Ser. 2012, 28, 1851-1864]. We further computed the 2-partition dimension of Cn (1, 2) for n ≥ 6.

2021 ◽  
Vol 40 (1) ◽  
pp. 1129-1135
Author(s):  
Kamran Azhar ◽  
Sohail Zafar ◽  
Agha Kashif ◽  
Zohaib Zahid

Fault-tolerant resolving partition is natural extension of resolving partitions which have many applications in different areas of computer sciences for example sensor networking, intelligent systems, optimization and robot navigation. For a nontrivial connected graph G (V (G) , E (G)), the partition representation of vertex v with respect to an ordered partition Π = {Si : 1 ≤ i ≤ k} of V (G) is the k-vector r ( v | Π ) = ( d ( v , S i ) ) i = 1 k , where, d (v, Si) = min {d (v, x) |x ∈ Si}, for i ∈ {1, 2, …, k}. A partition Π is said to be fault-tolerant partition resolving set of G if r (u|Π) and r (v|Π) differ by at least two places for all u ≠ v ∈ V (G). A fault-tolerant partition resolving set of minimum cardinality is called the fault-tolerant partition basis of G and its cardinality the fault-tolerant partition dimension of G denoted by P ( G ) . In this article, we will compute fault-tolerant partition dimension of families of tadpole and necklace graphs.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 124
Author(s):  
Laxman Saha ◽  
Rupen Lama ◽  
Kalishankar Tiwary ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a connected graph with vertex set V(G) and d(u,v) be the distance between the vertices u and v. A set of vertices S={s1,s2,…,sk}⊂V(G) is called a resolving set for G if, for any two distinct vertices u,v∈V(G), there is a vertex si∈S such that d(u,si)≠d(v,si). A resolving set S for G is fault-tolerant if S\{x} is also a resolving set, for each x in S, and the fault-tolerant metric dimension of G, denoted by β′(G), is the minimum cardinality of such a set. The paper of Basak et al. on fault-tolerant metric dimension of circulant graphs Cn(1,2,3) has determined the exact value of β′(Cn(1,2,3)). In this article, we extend the results of Basak et al. to the graph Cn(1,2,3,4) and obtain the exact value of β′(Cn(1,2,3,4)) for all n≥22.


2020 ◽  
Vol 28 (3) ◽  
pp. 15-37
Author(s):  
Muhammad Ahsan ◽  
Zohaib Zahid ◽  
Sohail Zafar

AbstractLet G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.


2020 ◽  
Vol 18 (1) ◽  
pp. 237-248 ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero

Abstract A set W of vertices of a connected graph G strongly resolves two different vertices x, y ∉ W if either d G (x, W) = d G (x, y) + d G (y, W) or d G (y, W) = d G (y, x) + d G (x, W), where d G (x, W) = min{d(x,w): w ∈ W} and d(x,w) represents the length of a shortest x − w path. An ordered vertex partition Π = {U 1, U 2,…,U k } of a graph G is a strong resolving partition for G, if every two different vertices of G belonging to the same set of the partition are strongly resolved by some other set of Π. The minimum cardinality of any strong resolving partition for G is the strong partition dimension of G. In this article, we obtain several bounds and closed formulae for the strong partition dimension of some families of graphs and give some realization results relating the strong partition dimension, the strong metric dimension and the order of graphs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Saqib Nazeer ◽  
Muhammad Hussain ◽  
Fatimah Abdulrahman Alrawajeh ◽  
Sultan Almotairi

Graph theory has a large number of applications in the fields of computer networking, robotics, Loran or sonar models, medical networks, electrical networking, facility location problems, navigation problems etc. It also plays an important role in studying the properties of chemical structures. In the field of telecommunication networks such as CCTV cameras, fiber optics, and cable networking, the metric dimension has a vital role. Metric dimension can help us in minimizing cost, labour, and time in the above discussed networks and in making them more efficient. Resolvability also has applications in tricky games, processing of maps or images, pattern recognitions, and robot navigation. We defined some new graphs and named them s − middle graphs, s -total graphs, symmetrical planar pyramid graph, reflection symmetrical planar pyramid graph, middle tower path graph, and reflection middle tower path graph. In the recent study, metric dimension of these path-related graphs is computed.


Author(s):  
Narjes Seyedi ◽  
Hamid Reza Maimani

A set $W$ of vertices in a graph $G$ is called a resolving setfor $G$ if for every pair of distinct vertices $u$ and $v$ of $G$ there exists a vertex $w \in W$ such that the distance between $u$ and $w$ is different from the distance between $v$ and $w$. The cardinality of a minimum resolving set is called the metric dimension of $G$, denoted by $\beta(G)$. A resolving set $W'$ for $G$ is fault-tolerant if $W'\setminus \left\lbrace w\right\rbrace $ for each $w$ in $W'$, is also a resolving set and the fault-tolerant metric dimension of $G$ is the minimum cardinality of such a set, denoted by $\beta'(G)$. The circulant graph is a graph with vertex set $\mathbb{Z}_{n}$, an additive group of integers modulo $n$, and two vertices labeled $i$ and $j$ adjacent if and only if $i -j \left( mod \ n \right)  \in C$, where $C \in \mathbb{Z}_{n}$ has the property that $C=-C$ and $0 \notin C$. The circulant graph is denoted by $X_{n,\bigtriangleup}$ where $\bigtriangleup = \vert C\vert$. In this paper, we study the fault-tolerant metric dimension of a family of circulant graphs $X_{n,3}$ with connection set $C=\lbrace 1,\dfrac{n}{2},n-1\rbrace$ and circulant graphs $X_{n,4}$ with connection set $C=\lbrace \pm 1,\pm 2\rbrace$.


Author(s):  
Jia-Bao Liu ◽  
Muhammad Faisal Nadeem ◽  
Mohammad Azeem

Aims and Objective: The idea of partition and resolving sets plays an important role in various areas of engineering, chemistry and computer science such as robot navigation, facility location, pharmaceutical chemistry, combinatorial optimization, networking, and mastermind game. Method: In a graph to obtain the exact location of a required vertex which is unique from all the vertices, several vertices are selected this is called resolving set and its generalization is called resolving partition, where selected vertices are in the form of subsets. Minimum number of partitions of the vertices into sets is called partition dimension. Results: It was proved that determining the partition dimension a graph is nondeterministic polynomial time (NP) problem. In this article, we find the partition dimension of convex polytopes and provide their bounds. Conclusion: The major contribution of this article is that, due to the complexity of computing the exact partition dimension we provides the bounds and show that all the graphs discussed in results have partition dimension either less or equals to 4, but it cannot been be greater than 4.


2019 ◽  
Vol 17 (1) ◽  
pp. 1303-1309 ◽  
Author(s):  
Ghulam Abbas ◽  
Usman Ali ◽  
Mobeen Munir ◽  
Syed Ahtsham Ul Haq Bokhary ◽  
Shin Min Kang

Abstract Classical applications of resolving sets and metric dimension can be observed in robot navigation, networking and pharmacy. In the present article, a formula for computing the metric dimension of a simple graph wihtout singleton twins is given. A sufficient condition for the graph to have the exchange property for resolving sets is found. Consequently, every minimal resolving set in the graph forms a basis for a matriod in the context of independence defined by Boutin [Determining sets, resolving set and the exchange property, Graphs Combin., 2009, 25, 789-806]. Also, a new way to define a matroid on finite ground is deduced. It is proved that the matroid is strongly base orderable and hence satisfies the conjecture of White [An unique exchange property for bases, Linear Algebra Appl., 1980, 31, 81-91]. As an application, it is shown that the power graphs of some finite groups can define a matroid. Moreover, we also compute the metric dimension of the power graphs of dihedral groups.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 125
Author(s):  
Ismael González Yero

We consider in this work a new approach to study the simultaneous strong metric dimension of graphs families, while introducing the simultaneous version of the strong resolving graph. In concordance, we consider here connected graphs G whose vertex sets are represented as V ( G ) , and the following terminology. Two vertices u , v ∈ V ( G ) are strongly resolved by a vertex w ∈ V ( G ) , if there is a shortest w − v path containing u or a shortest w − u containing v. A set A of vertices of the graph G is said to be a strong metric generator for G if every two vertices of G are strongly resolved by some vertex of A. The smallest possible cardinality of any strong metric generator (SSMG) for the graph G is taken as the strong metric dimension of the graph G. Given a family F of graphs defined over a common vertex set V, a set S ⊂ V is an SSMG for F , if such set S is a strong metric generator for every graph G ∈ F . The simultaneous strong metric dimension of F is the minimum cardinality of any strong metric generator for F , and is denoted by Sd s ( F ) . The notion of simultaneous strong resolving graph of a graph family F is introduced in this work, and its usefulness in the study of Sd s ( F ) is described. That is, it is proved that computing Sd s ( F ) is equivalent to computing the vertex cover number of the simultaneous strong resolving graph of F . Several consequences (computational and combinatorial) of such relationship are then deduced. Among them, we remark for instance that we have proved the NP-hardness of computing the simultaneous strong metric dimension of families of paths, which is an improvement (with respect to the increasing difficulty of the problem) on the results known from the literature.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850008
Author(s):  
Muhammad Imran ◽  
A. Q. Baig ◽  
Saima Rashid ◽  
Andrea Semaničová-Feňovčíková

Let [Formula: see text] be a connected graph and [Formula: see text] be the distance between the vertices [Formula: see text] and [Formula: see text] in [Formula: see text]. The diameter of [Formula: see text] is defined as [Formula: see text] and is denoted by [Formula: see text]. A subset of vertices [Formula: see text] is called a resolving set for [Formula: see text] if for every two distinct vertices [Formula: see text], there is a vertex [Formula: see text], [Formula: see text], such that [Formula: see text]. A resolving set containing the minimum number of vertices is called a metric basis for [Formula: see text] and the number of vertices in a metric basis is its metric dimension, denoted by [Formula: see text]. Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let [Formula: see text] be a family of connected graphs [Formula: see text] depending on [Formula: see text] as follows: the order [Formula: see text] and [Formula: see text]. If there exists a constant [Formula: see text] such that [Formula: see text] for every [Formula: see text] then we shall say that [Formula: see text] has bounded metric dimension, otherwise [Formula: see text] has unbounded metric dimension. If all graphs in [Formula: see text] have the same metric dimension, then [Formula: see text] is called a family of graphs with constant metric dimension. In this paper, we study the metric properties of an infinite class of circulant graphs with three generators denoted by [Formula: see text] for any positive integer [Formula: see text] and when [Formula: see text]. We compute the diameter and determine the exact value of the metric dimension of these circulant graphs.


Sign in / Sign up

Export Citation Format

Share Document