scholarly journals Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19

2021 ◽  
pp. 1-14
Author(s):  
Filipe Fernandes ◽  
Stéfano Frizzo Stefenon ◽  
Laio Oriel Seman ◽  
Ademir Nied ◽  
Fernanda Cristina Silva Ferreira ◽  
...  

The long short-term memory (LSTM) is a high-efficiency model for forecasting time series, for being able to deal with a large volume of data from a time series with nonlinearities. As a case study, the stacked LSTM will be used to forecast the growth of the pandemic of COVID-19, based on the increase in the number of contaminated and deaths in the State of Santa Catarina, Brazil. COVID-19 has been spreading very quickly, causing great concern in relation to the ability to care for critically ill patients. Control measures are being imposed by governments with the aim of reducing the contamination and the spreading of viruses. The forecast of the number of contaminated and deaths caused by COVID-19 can help decision making regarding the adopted restrictions, making them more or less rigid depending on the pandemic’s control capacity. The use of LSTM stacking shows an R2 of 0.9625 for confirmed cases and 0.9656 for confirmed deaths caused by COVID-19, being superior to the combinations among other evaluated models.

2020 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Josua Manullang ◽  
Albertus Joko Santoso ◽  
Andi Wahju Rahardjo Emanuel

Abstract. Prediction of tourist visits of Mount Merbabu National Park (TNGMb) needs to be done to control the number of visitors and to preserve the national park. The combination of time series forecasting (TSF) and deep learning methods has become a new alternative for prediction. This case study was conducted to implement several methods combination of TSF and Long-Short Term Memory (LSTM) to predict the visits. In this case study, there are 18 modelling scenarios as research objects to determine the best model by utilizing tourist visits data from 2013 to 2018. The results show that the model applying the lag time method can improve the model's ability to capture patterns on time series data. The error value is measured using the root mean square error (RMSE), with the smallest value of 3.7 in the LSTM architecture, using seven lags as a feature and one lag as a label.Keywords: Tourist Visit, Taman Nasional Gunung Merbabu, Prediction, Recurrent Neural Network, Long-Short Term MemoryAbstrak. Prediksi kunjungan wisatawan Taman Nasional Gunung Merbabu (TNGMb) perlu dilakukan untul pengendalian jumlah pengunjung dan menjaga kelestarian taman nasional. Gabungan metode antara time series forecasting (TSF) dan deep learning telah menjadi alternatif baru untuk melakukan prediksi. Studi kasus ini dilakukan untuk mengimplementasi gabungan dari beberapa macam metode antara TSF dan Long-Short Term Memory (LSTM) untuk memprediksi kunjungan pada TNGMb. Pada studi kasus ini, terdapat 18 skenario pemodelan sebagai objek penelitian untuk menentukan model terbaik, dengan memanfaatkan data jumlah kunjungan wisatawan di TNGMb mulai dari tahun 2013 sampai dengan tahun 2018. Hasil prediksi menunjukkan pemodelan dengan menerapkan metode lag time dapat meningkatakan kemampuan model untuk menangkap pola pada data deret waktu. Besar nilai kesalahan diukur menggunakan root mean square error (RMSE), dengan nilai terkecil sebesar 3,7 pada arsitektur LSTM, menggunakan tujuh lag sebagai feature dan satu lag sebagai label. Kata Kunci: Kunjungan Wisatawan, Taman Nasional Gunung Merbabu, Prediksi, Recurrent Neural Network, Long-Short Term Memory


2021 ◽  
Vol 42 (18) ◽  
pp. 6921-6944
Author(s):  
Yi Chen ◽  
Yi He ◽  
Lifeng Zhang ◽  
Youdong Chen ◽  
Hongyu Pu ◽  
...  

2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


2020 ◽  
Vol 23 (65) ◽  
pp. 124-135
Author(s):  
Imane Guellil ◽  
Marcelo Mendoza ◽  
Faical Azouaou

This paper presents an analytic study showing that it is entirely possible to analyze the sentiment of an Arabic dialect without constructing any resources. The idea of this work is to use the resources dedicated to a given dialect \textit{X} for analyzing the sentiment of another dialect \textit{Y}. The unique condition is to have \textit{X} and \textit{Y} in the same category of dialects. We apply this idea on Algerian dialect, which is a Maghrebi Arabic dialect that suffers from limited available tools and other handling resources required for automatic sentiment analysis. To do this analysis, we rely on Maghrebi dialect resources and two manually annotated sentiment corpus for respectively Tunisian and Moroccan dialect. We also use a large corpus for Maghrebi dialect. We use a state-of-the-art system and propose a new deep learning architecture for automatically classify the sentiment of Arabic dialect (Algerian dialect). Experimental results show that F1-score is up to 83% and it is achieved by Multilayer Perceptron (MLP) with Tunisian corpus and with Long short-term memory (LSTM) with the combination of Tunisian and Moroccan. An improvement of 15% compared to its closest competitor was observed through this study. Ongoing work is aimed at manually constructing an annotated sentiment corpus for Algerian dialect and comparing the results


Sign in / Sign up

Export Citation Format

Share Document