Development and calibration of drum-based rolling resistance testing machine for manual wheelchair components

2021 ◽  
pp. 1-13
Author(s):  
Joseph Ott ◽  
M. Mendel Marcus ◽  
Travis Henderson ◽  
Holly Wilson-Jene ◽  
London Lee ◽  
...  

BACKGROUND: Manual wheelchair users are at a high risk of repetitive strain injuries, carpal tunnel syndrome, and rotator cuff tears due to propelling their wheelchair for mobility. Rolling resistance (RR) is one of the key forces that leads to increased propulsion forces and risk of injuries. OBJECTIVE: To better understand the factors contributing to RR, we iteratively designed, developed, and validated a drum-based testing machine and test method. METHODS: As part of the validation of the system, we tested and compared 4 manual wheelchair wheels under a range of conditions including camber, toe in/out, tire pressure, surfaces, and speed. A treadmill was employed to simulate flat ground RR. RESULTS: A machine was effectively design, developed, and tested to measure RR. Tire type, surfaces, and toe were found to be the largest contributors to RR. Comparison of the drum-based system to flat ground revealed that an offset can be used to calculate overground RR from drum measurements. CONCLUSIONS: Ongoing work includes performing a comprehensive analysis of the degree to which each factor contributes to RR of commonly used casters and rear-wheels so that the wheelchair sector can work to reduce RR and the associated risk of repetitive strain injuries.

2021 ◽  
Vol 8 ◽  
pp. 205566832098030
Author(s):  
Joseph Ott ◽  
Jonathan Pearlman

Introduction Rolling resistance (RR) is a drag force acting on manual wheelchairs that is associated with increased propulsion force and is linked to secondary disabling conditions of the upper limbs. A scoping review was conducted to understand how RR of manual wheelchairs has been measured and to identify limitations of those test methods and the factors tested. Methods A total of 42 papers were identified and reviewed, and test methods were categorized based on the measurement style of RR, testing level, and if multiple parameters could be tested. Additionally, 34 articles were reviewed for what factors were tested. Results Seven different testing methods categories were identified: drag test, treadmill, motor draw, deceleration, physiological expenditure, ergometer/dynamometer, and robotic test rig. Relevant articles were categorized into testing factor categories: camber, toe, tire type, tire pressure, caster type, mass, mass distribution, and type of surface. Conclusions The variety of testing methods suggests the need for a standardized method that can be used for wheelchair wheel design and selection to reduce RR. It is important to use adjustments, such as a forward rear axle position to mitigate RR as well as using high-pressure pneumatic tires that are properly inflated.


Author(s):  
Brooke Odle ◽  
Gail Forrest ◽  
Jeffrey Reinbolt ◽  
Trevor Dyson-Hudson

Extended manual wheelchair use has been associated with repetitive strain injuries in the shoulder and has been identified as a contributing factor to upper limb pain experienced by manual wheelchair users with spinal cord injury (SCI) [1]. Due to the nature of their SCI, individuals with tetraplegia (formerly quadriplegia) may be at an even greater risk for developing shoulder injuries because they often have only partial innervation of their shoulder, scapular, and thoracohumeral muscles [2].


2001 ◽  
Vol 29 (3) ◽  
pp. 134-154 ◽  
Author(s):  
J. R. Luchini ◽  
M. M. Motil ◽  
W. V. Mars

Abstract This paper discusses the measurement and modeling of tire rolling resistance for a group of radial medium truck tires. The tires were subjected to tread depth modifications by “buffing” the tread surface. The experimental work used the equilibrium test method of SAE J-1269. The finite element analysis (FEA) tire model for tire rolling resistance has been previously presented. The results of the testing showed changes in rolling resistance as a function of tread depth that were inconsistent between tires. Several observations were also inconsistent with published information and common knowledge. Several mechanisms were proposed to explain the results. Additional experiments and models were used to evaluate the mechanisms. Mechanisms that were examined included tire age, surface texture, and tire shape. An explanation based on buffed tread radius, and the resulting changes in footprint stresses, is proposed that explains the observed experimental changes in rolling resistance with tread depth.


Author(s):  
Bekele Sharew ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Background Antimicrobial-resistant strains of Streptococcus pneumoniae have become one of the greatest challenges to global public health today and inappropriate use of antibiotics and high level of antibiotic use is probably the main factor driving the emergence of resistance worldwide. The aim of this study is, therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected of pneumococcal infections in Ethiopia. Methods A hospital-based prospective study was conducted from January 2018 to December 2019 at Addis Ababa city and Amhara National Region State Referral Hospitals. Antimicrobial resistance tests were performed from isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, and pleural and peritoneal fluids) from all collection sites were initially cultured on 5% sheep blood agar plates and incubated overnight at 37 °C in a 5% CO2 atmosphere. Streptococcus pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility, and bile solubility test. Drug resistance testing was performed using the E-test method according to recommendations of the Clinical and Laboratory Standards Institute. Results Of the 57 isolates, 17.5% were fully resistant to penicillin. The corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5 and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin, and tetracycline. Conclusions Most S. pneumoniae isolates were susceptible to ceftriaxone and cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to several commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antimicrobial resistance patterns to select empirical treatments for better management of pneumococcal infection.


Author(s):  
Marcília Valéria Guimarães ◽  
Elton Bonifácio ◽  
Thiago Carmo ◽  
Cleudmar Araújo

Abstract Rotator cuff (RC) tears cause pain and functional disability of the shoulder. Despite advances in suture anchors, there are still reports about the incidence of surgical-related injuries to RC mainly associated with sutures. The purpose of this study was to design and evaluate the mechanical behavior of sutureless implants to repair RC tears. We hypothesized that the implants present mechanical characteristics suitable for the surgical treatment of RC tears as suture anchors. Three different implants (T1,T2,T3) were designed and fabricated with titanium: T1 has two rods and rectangular head; T2 has two rods with a small opening and enlarged rectangular head and T3 has three rods and a circular head. The implants were fixed in rigid polyurethane foam blocks by a series of blows, and the applied mechanical loads along with the number of blows were quantified. Pullout tests using tapes fixed between the implant head and testing machine grip were conducted until implant failure. The maximum pullout strength and displacement of the implant relative to the rigid foam block were computed. Statistical significance was set at p < 0.05. Owing to its geometric configuration, implant T2 presented the best characteristics related to stability, strength, and ease of insertion. Implant T2 confirms our hypothesis that its mechanical behavior is compatible with that of suture anchors which could lead to the reduction of RC repair failures and simplify the arthroscopic procedure.


2014 ◽  
Vol 1070-1072 ◽  
pp. 392-397
Author(s):  
Jun Hui Xu ◽  
Ming Qiu Gao ◽  
Ji Qiang Gao ◽  
Xiang Bao

In the background of the main technologies of fuel economy in automobiles developed to a certain stage, it is necessary to reduce fuel consumption and increase the engine efficiency by developing other auxiliary technologies such as improving the ratio of pure energy drive, low rolling resistance tires, tire pressure monitoring system and gear shift indicators (GSI). This article introduces the principle of GSI, analyses how GSI works in improving engine efficiency, and then evaluates the method for determination of the relative saving rate of fuel consumption, which method was introduced in the EU regulation EC No. 65/2012.


2020 ◽  
Author(s):  
BEKELE SHAREW ◽  
Feleke Moges ◽  
Gizachew Yismaw ◽  
Wondiwossen Abebe ◽  
Surafal Fentaw ◽  
...  

Abstract Backgrounds: Streptococcus pneumoniae is one of the leading causes of bacterial meningitis and pneumoniae in elderly people and children. Antimicrobial resistant strains of Streptococcus pneumoniae has been detected in all parts of the world and become one of the greatest challenges to global public health today. The aim of this study is therefore, to assess the antimicrobial resistance profiles and multidrug resistance patterns of S. pneumoniae isolates from patients suspected for pneumococcal infections in Ethiopia. Methods: A hospital-based prospective study was conducted from 2018 to 2019 at Addis Ababa and Amhara region referral hospitals. Antimicrobial resistance tests were performed on 57 isolates of S. pneumoniae that were collected from pediatric and adult patients. Samples (cerebrospinal fluid, blood, sputum, eye discharge, ear discharge, pleural and peritoneal fluids) from all collection sites were initially cultured onto 5 % sheep blood agar plates and incubated overnight at 370C in 5% CO2 atmosphere. S. pneumoniae was identified and confirmed by typical colony morphology, alpha-hemolysis, Gram staining, optochin susceptibility and bile solubility test. Drug resistance testing was performed using E-test method according to recommendations of the Clinical and Laboratory Standards Institute.Results: Of the 57 isolates, 17.5% were fully resistant to penicillin. Corresponding value for both cefotaxime and ceftriaxone was 1.8%. Resistance rates to erythromycin, clindamycin, tetracycline, chloramphenicol and trimethoprim-sulfamethoxazole were 59.6%, 17.5%, 38.6%, 17.5% and 24.6%, respectively. Multidrug resistance (MDR) was seen in 33.3% isolates. The most common pattern was co-resistance to penicillin, erythromycin, clindamycin and tetracycline.Conclusions: Most bacterial isolates were susceptible to Ceftriaxone and Cefotaxime. Penicillin has been used as a drug of choice for treating S. pneumoniae infection. However, antimicrobial resistance including multidrug resistance was observed to a number of commonly used antibiotics including penicillin. Hence, it is important to periodically monitor the antibiotic resistance patterns to choose empirical treatments for better management of pneumococcal infection.


Sign in / Sign up

Export Citation Format

Share Document