Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network

2021 ◽  
pp. 1-16
Author(s):  
Sumit Tripathi ◽  
Neeraj Sharma

BACKGROUND: The noise in magnetic resonance (MR) images causes severe issues for medical diagnosis purposes. OBJECTIVE: In this paper, we propose a discriminative learning based convolutional neural network denoiser to denoise the MR image data contaminated with noise. METHODS: The proposed method incorporates the use of depthwise separable convolution along with local response normalization with modified hyperparameters and internal skip connections to denoise the contaminated MR images. Moreover, the addition of parametric RELU instead of normal conventional RELU in our proposed architecture gives more stable and fine results. The denoised images were further segmented to test the appropriateness of the results. The network is trained on one dataset and tested on other dataset produces remarkably good results. RESULTS: Our proposed network was used to denoise the images of different noise levels, and it yields better performance as compared with various networks. The SSIM and PSNR showed an average improvement of (7.2 ± 0.002) % and (8.5 ± 0.25) % respectively when tested on different datasets without retaining the network. An improvement of 5% and 6% was achieved in the values of mean intersection over union (mIoU) and BF score when the denoised images were segmented for testing the relevancy in biomedical imaging applications. The statistical test suggests that the obtained results are statistically significant as p< 0.05. CONCLUSION: The denoised images obtained are more clinically suitable for medical image diagnosis purposes, as depicted by the evaluation parameters. Further, external clinical validation was performed by an experienced radiologist for testing the validation of the resulting images.

Author(s):  
Hong Lu ◽  
Xiaofei Zou ◽  
Longlong Liao ◽  
Kenli Li ◽  
Jie Liu

Compressive Sensing for Magnetic Resonance Imaging (CS-MRI) aims to reconstruct Magnetic Resonance (MR) images from under-sampled raw data. There are two challenges to improve CS-MRI methods, i.e. designing an under-sampling algorithm to achieve optimal sampling, as well as designing fast and small deep neural networks to obtain reconstructed MR images with superior quality. To improve the reconstruction quality of MR images, we propose a novel deep convolutional neural network architecture for CS-MRI named MRCSNet. The MRCSNet consists of three sub-networks, a compressive sensing sampling sub-network, an initial reconstruction sub-network, and a refined reconstruction sub-network. Experimental results demonstrate that MRCSNet generates high-quality reconstructed MR images at various under-sampling ratios, and also meets the requirements of real-time CS-MRI applications. Compared to state-of-the-art CS-MRI approaches, MRCSNet offers a significant improvement in reconstruction accuracies, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). Besides, it reduces the reconstruction error evaluated by the Normalized Root-Mean-Square Error (NRMSE). The source codes are available at https://github.com/TaihuLight/MRCSNet .


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Sahar Gull ◽  
Shahzad Akbar ◽  
Habib Ullah Khan

Brain tumor is a fatal disease, caused by the growth of abnormal cells in the brain tissues. Therefore, early and accurate detection of this disease can save patient’s life. This paper proposes a novel framework for the detection of brain tumor using magnetic resonance (MR) images. The framework is based on the fully convolutional neural network (FCNN) and transfer learning techniques. The proposed framework has five stages which are preprocessing, skull stripping, CNN-based tumor segmentation, postprocessing, and transfer learning-based brain tumor binary classification. In preprocessing, the MR images are filtered to eliminate the noise and are improve the contrast. For segmentation of brain tumor images, the proposed CNN architecture is used, and for postprocessing, the global threshold technique is utilized to eliminate small nontumor regions that enhanced segmentation results. In classification, GoogleNet model is employed on three publicly available datasets. The experimental results depict that the proposed method is achieved average accuracies of 96.50%, 97.50%, and 98% for segmentation and 96.49%, 97.31%, and 98.79% for classification of brain tumor on BRATS2018, BRATS2019, and BRATS2020 datasets, respectively. The outcomes demonstrate that the proposed framework is effective and efficient that attained high performance on BRATS2020 dataset than the other two datasets. According to the experimentation results, the proposed framework outperforms other recent studies in the literature. In addition, this research will uphold doctors and clinicians for automatic diagnosis of brain tumor disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryohei Fukuma ◽  
Takufumi Yanagisawa ◽  
Manabu Kinoshita ◽  
Takashi Shinozaki ◽  
Hideyuki Arita ◽  
...  

AbstractIdentification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a diagnosis based on conventional radiomic features and patient age. Multisite preoperative MR images of 164 patients with grade II/III glioma were grouped by IDH and TERT promoter (pTERT) mutations as follows: (1) IDH wild type, (2) IDH and pTERT co-mutations, (3) IDH mutant and pTERT wild type. We applied a CNN (AlexNet) to four types of MR sequence and obtained the CNN texture features to classify the groups with a linear support vector machine. The classification was also performed using conventional radiomic features and/or patient age. Using all features, we succeeded in classifying patients with an accuracy of 63.1%, which was significantly higher than the accuracy obtained from using either the radiomic features or patient age alone. In particular, prediction of the pTERT mutation was significantly improved by the CNN texture features. In conclusion, the pretrained CNN texture features capture the information of IDH and TERT genotypes in grade II/III gliomas better than the conventional radiomic features.


Sign in / Sign up

Export Citation Format

Share Document