Modeling head tracking of visual targets

2002 ◽  
Vol 12 (1) ◽  
pp. 25-33
Author(s):  
K.J. Chen ◽  
E.A. Keshner ◽  
B.W. Peterson ◽  
T.C. Hain

Control of the head involves somatosensory, vestibular, and visual feedback. The dynamics of these three feedback systems must be identified in order to gain a greater understanding of the head control system. We have completed one step in the development of a head control model by identifying the dynamics of the visual feedback system. A mathematical model of human head tracking of visual targets in the horizontal plane was fit to experimental data from seven subjects performing a visual head tracking task. The model incorporates components based on the underlying physiology of the head control system. Using optimization methods, we were able to identify neural processing delay, visual control gain, and neck viscosity parameters in each experimental subject.

1995 ◽  
Vol 73 (6) ◽  
pp. 2293-2301 ◽  
Author(s):  
F. A. Keshner ◽  
B. W. Peterson

1. Potential mechanisms for controlling stabilization of the head and neck include voluntary movements, vestibular (VCR) and proprioceptive (CCR) neck reflexes, and system mechanics. In this study we have tested the hypothesis that the relative importance of those mechanisms in producing compensatory actions of the head-neck motor system depends on the frequency of an externally applied perturbation. Angular velocity of the head with respect to the trunk (neck) and myoelectric activity of three neck muscles were recorded in seven seated subjects during pseudorandom rotations of the trunk in the horizontal plane. Subjects were externally perturbed with a random sum-of-sines stimulus at frequencies ranging from 0.185 to 4.11 Hz. Four instructional sets were presented. Voluntary mechanisms were examined by having the subjects actively stabilize the head in the presence of visual feedback as the body was rotated (VS). Visual feedback was then removed, and the subjects attempted to stabilize the head in the dark as the body was rotated (NV). Reflex mechanisms were examined when subjects performed a mental arithmetic task during body rotations in the dark (MA). Finally, subjects performed a voluntary head tracking task while the body was kept stationary (VT). 2. Gains and phases of head velocity indicated good compensation to the stimulus in VS and NV at frequencies < 1 Hz. Gains dropped and phases advanced between 1 and 2 Hz, suggesting interference between neural and mechanical components. Above 3 Hz, the gains of head velocity increased steeply and exceeded unity, suggesting the emergence of mechanical resonance.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 107 (12) ◽  
pp. 1343-1348 ◽  
Author(s):  
William J. Sydor ◽  
David Pimentel

AbstractAn investigation was made of the impact of a series of environmental catastrophes upon herbivore population regulation through density-dependent genetic feedback interactions with simulated plants. Mean density and amplitude of fluctuation of the herbivore in the control system (only susceptible alleles in the plant population) were higher than in the genetic feedback system (3 resistant alleles and 3 susceptible alleles in the plant population). Mean density and amplitude of fluctuation of the herbivores in the catastrophic system (only susceptible alleles in the plant population and the herbivore population subject to a series of environmental catastrophes) were lower than in the control and genetic feedback systems, but both mean density and amplitude of fluctuation were higher than in the genetic feedback and catastrophic system (3 resistant and 3 susceptible alleles in the plant population and the herbivore population subject to a series of environmental catastrophes). The results of this experiment suggest that genetic feedback can exert a controlling influence in population dynamics even in systems where environmental catastrophes are a common occurrence.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1342-1351
Author(s):  
Musadaq A. Hadi ◽  
Hazem I. Ali

In this paper, a new design of the model reference control scheme is proposed in a class of nonlinear strict-feedback system. First, the system is analyzed using Lyapunov stability analysis. Next, a model reference is used to improve system performance. Then, the Integral Square Error (ISE) is considered as a cost function to drive the error between the reference model and the system to zero. After that, a powerful metaheuristic optimization method is used to optimize the parameters of the proposed controller. Finally, the results show that the proposed controller can effectively compensate for the strictly-feedback nonlinear system with more desirable performance.


Author(s):  
A.I. Glushchenko ◽  
M.Yu. Serov

В статье рассматривается вопрос совершенствования системы управления параллельно-работающими насосными агрегатами с целью повышения энергоэффективности их работы. Проведено сравнение и выявление недостатков существующих методов решения рассматриваемой проблемы. Предложена идея нового подхода на базе онлайн оптимизации. The problem under consideration is improvement of the energy efficiency of a control system of parallel-running pump units. Known methods used to solve this problem are considered. Their advantages and disadvantages are shown. Finally, the idea of a new approach, which is based on online optimization, is proposed.


2021 ◽  
Vol 11 (12) ◽  
pp. 5503
Author(s):  
Munkhjargal Gochoo ◽  
Syeda Amna Rizwan ◽  
Yazeed Yasin Ghadi ◽  
Ahmad Jalal ◽  
Kibum Kim

Automatic head tracking and counting using depth imagery has various practical applications in security, logistics, queue management, space utilization and visitor counting. However, no currently available system can clearly distinguish between a human head and other objects in order to track and count people accurately. For this reason, we propose a novel system that can track people by monitoring their heads and shoulders in complex environments and also count the number of people entering and exiting the scene. Our system is split into six phases; at first, preprocessing is done by converting videos of a scene into frames and removing the background from the video frames. Second, heads are detected using Hough Circular Gradient Transform, and shoulders are detected by HOG based symmetry methods. Third, three robust features, namely, fused joint HOG-LBP, Energy based Point clouds and Fused intra-inter trajectories are extracted. Fourth, the Apriori-Association is implemented to select the best features. Fifth, deep learning is used for accurate people tracking. Finally, heads are counted using Cross-line judgment. The system was tested on three benchmark datasets: the PCDS dataset, the MICC people counting dataset and the GOTPD dataset and counting accuracy of 98.40%, 98%, and 99% respectively was achieved. Our system obtained remarkable results.


1999 ◽  
Vol 32 (2) ◽  
pp. 2298-2303
Author(s):  
Akira Maruyama ◽  
Masayuki Fujita

2001 ◽  
Author(s):  
Xiaotian Sun ◽  
Roberto Horowitz ◽  
Kyriakos Komvopoulos

Abstract A nonlinear control system that can track the natural frequency of a MEMS resonator was developed in this study. Due to the evolution of fatigue damage, the natural frequency of the resonator decreases. To maintain the device at resonance, a phase-locked loop system is used to track the frequency decay and adjust the driving force accordingly. A model for the control system is introduced and the system behavior is analyzed using an averaging method. A quantitative criterion for selecting the control gain to achieve stability is derived from the analysis. Simulation results are shown to be in good agreement with the prediction of the theoretical analysis.


1959 ◽  
Vol 26 (2) ◽  
pp. 205-209
Author(s):  
R. H. Cannon

Abstract When a feedback system is devised to control a mechanical member that is structurally limber, unstable (“self-excited”) vibrations may be encountered at approximately a natural frequency of the structural member. Cures are generally easy to effect once the phenomena are understood. Two interesting cases are described: ground vibrations of an airplane control system due to a limber fuselage, and vibrations of a stable platform system due to limberness in the platform structure. The investigations are carried out using the root-locus technique, which provides a plot of system characteristics as explicit functions of control strength. In the case of the stable platform, the analysis is found to be more reliable than physical intuition.


Sign in / Sign up

Export Citation Format

Share Document