Directional effects of whole-body spinning and visual flow in virtual reality on vagal neuromodulation

2021 ◽  
pp. 1-16
Author(s):  
Alexander Yang Hui Xiang ◽  
Prashanna Khwaounjoo ◽  
Yusuf Ozgur Cakmak

BACKGROUND: Neural circuits allow whole-body yaw rotation to modulate vagal parasympathetic activity, which alters beat-to-beat variation in heart rate. The overall output of spinning direction, as well as vestibular-visual interactions on vagal activity still needs to be investigated. OBJECTIVE: This study investigated direction-dependent effects of visual and natural vestibular stimulation on two autonomic responses: heart rate variability (HRV) and pupil diameter. METHODS: Healthy human male subjects (n = 27) underwent constant whole-body yaw rotation with eyes open and closed in the clockwise (CW) and anticlockwise (ACW) directions, at 90°/s for two minutes. Subjects also viewed the same spinning environments on video in a VR headset. RESULTS: CW spinning significantly decreased parasympathetic vagal activity in all conditions (CW open p = 0.0048, CW closed p = 0.0151, CW VR p = 0.0019,), but not ACW spinning (ACW open p = 0.2068, ACW closed p = 0.7755, ACW VR p = 0.1775,) as indicated by an HRV metric, the root mean square of successive RR interval differences (RMSSD). There were no direction-dependent effects of constant spinning on sympathetic activity inferred through the HRV metrics, stress index (SI), sympathetic nervous system index (SNS index) and pupil diameter. Neuroplasticity in the CW eyes closed and CW VR conditions post stimulation was observed. CONCLUSIONS: Only one direction of yaw spinning, and visual flow caused vagal nerve neuromodulation and neuroplasticity, resulting in an inhibition of parasympathetic activity on the heart, to the same extent in either vestibular or visual stimulation. These results indicate that visual flow in VR can be used as a non-electrical method for vagus nerve inhibition without the need for body motion in the treatment of disorders with vagal overactivity. The findings are also important for VR and spinning chair based autonomic nervous system modulation protocols, and the effects of motion integrated VR.

2014 ◽  
Vol 32 (2) ◽  
pp. 279-285 ◽  
Author(s):  
Camila Balsamo Gardim ◽  
Bruno Affonso P. de Oliveira ◽  
Aline Fernanda B. Bernardo ◽  
Rayana Loch Gomes ◽  
Francis Lopes Pacagnelli ◽  
...  

OBJECTIVE:To gather current information about the effects of type 1 diabetes mellitus on children's cardiac autonomic behavior.DATA SOURCES: The search of articles was conducted on PubMed, Ibecs, Medline, Cochrane, Lilacs, SciELO and PEDro databases using the MeSH terms: "autonomic nervous system", "diabetes mellitus", "child", "type 1 diabetes mellitus", "sympathetic nervous system" and "parasympathetic nervous system", and their respective versions in Portuguese (DeCS). Articles published from January 2003 to February 2013 that enrolled children with 9-12 years old with type 1 diabetes mellitus were included in the review.DATA SYNTHESIS: The electronic search resulted in four articles that approached the heart rate variability in children with type 1 diabetes mellitus, showing that, in general, these children present decreased global heart rate variability and vagal activity. The practice of physical activity promoted benefits for these individuals.CONCLUSIONS: Children with type 1 diabetes mellitus present changes on autonomic modulation, indicating the need for early attention to avoid future complications in this group.


2020 ◽  
Author(s):  
Shubham Debnath ◽  
Todd J. Levy ◽  
Mayer Bellehsen ◽  
Rebecca M. Schwartz ◽  
Douglas P. Barnaby ◽  
...  

AbstractThe autonomic nervous system (ANS), which maintains physiological homeostasis in various organ systems via parasympathetic and sympathetic branches, is altered in common diffuse and focal conditions. Sensitive, quantitative biomarkers could detect changes in ANS function, first here in healthy participants and eventually in patients displaying dysautonomia. This framework combines controlled autonomic testing with feature extraction from physiological responses. Twenty-one individuals were assessed in two morning and two afternoon sessions over two weeks. Each session included five standard clinical tests probing autonomic function: squat test, cold pressor test, diving reflex test, deep breathing, and Valsalva maneuver. Noninvasive sensors captured continuous electrocardiography, blood pressure, breathing, electrodermal activity, and pupil diameter. Heart rate, heart rate variability, mean arterial pressure, electrodermal activity, and pupil diameter responses to the perturbations were extracted, and averages across participants were computed. A template matching algorithm calculated scaling and stretching features that optimally fit the average to an individual response. These features were grouped based on test and modality to derive sympathetic and parasympathetic indices for this healthy population. A significant positive correlation (p = 0.000377) was found between sympathetic amplitude response and body mass index. Additionally, longer duration and larger amplitude sympathetic and longer duration parasympathetic responses occurred in afternoon testing sessions; larger amplitude parasympathetic responses occurred in morning sessions. These results demonstrate the robustness and sensitivity of an algorithmic approach to extract multimodal responses from standard tests. This novel method of quantifying ANS function can be used for early diagnosis, measurement of disease progression, or treatment evaluation.


2021 ◽  
Author(s):  
Anton Swart ◽  
Demitri Constantinou

Abstract Background: Acute bouts of ultra-endurance exercise may cause an acute reduction in cardiac function, causing a physiological cascade which releases cardiac biomarkers. This study set out to determine the cardiac stress and recovery of participation in a three-day ultra-endurance mountain biking event of athletes using heart rate variability (HRV) as an outcome measure. Sixteen healthy participants (male and female) participating in a three-day ultra-endurance mountain biking event underwent a five-minute resting electrocardiography (ECG) recording in a supine position. Heart rate variability measurements were recorded two days before the race (baseline testing), after each race day, and at 24-hour post-event (recovery). Results: Time-domain and frequency domain measures showed significant (p≤0.05) changes from baseline in HRV parameters after each race day. The significant changes in HRV parameters reflected an increase in sympathetic activity after each day of the event. Our data revealed that the mean HR and RR variability variables did not return to baseline value after 24-hours of recovery, reflecting autonomic nervous system dysfunction, and that changes persisted for at least 24-hours post-event.Conclusion: Our study shows that competing in an ultra-endurance mountain bike event led to diminished vagal activity and a decrease in HRV throughout the event and persisted for at least 24-hours post-event. The body was under continuous sympathetic dominance during rest as well as during each day of racing, implying each race day can be considered a physiological stress. This may, in turn, cause a disturbance in homeostasis and an increase in autonomic nervous system dysfunction. This has implications for further research, including dysrhythmia risk, and monitoring of athletes in advising a return to strenuous activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darrian Rice ◽  
Giorgio P. Martinelli ◽  
Weitao Jiang ◽  
Gay R. Holstein ◽  
Suhrud M. Rajguru

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.


2020 ◽  
Author(s):  
Anton Swart ◽  
Demitri Constantinou

Objectives Our study set out to determine the cardiac stress and recovery of participation in a three-day ultra-endurance mountain biking event of athletes using heart rate variability (HRV) as an outcome measure. Methods Sixteen healthy participants (male and female) participating in a three-day ultra-endurance mountain biking event underwent a five-minute resting ECG recording in a supine position. Heart rate variability measurements were recorded two days before the race (baseline testing), after each race day, and at 24-hour post-event (recovery). Results Time-domain and frequency domain measures showed significant (p≤0.05) changes from baseline in HRV parameters after each race day. Our study found significant changes in HRV parameters, all of which reflected an increase in sympathetic activity after each day of the event. These data also revealed that the mean HR and RR variability variables did not return to baseline value after 24-hours of recovery, reflecting autonomic nervous system dysfunction, and that changes persisted for at least 24-hours post-event. Conclusion Our study shows that competing in an ultra-endurance mountain bike event led to diminished vagal activity and a decrease in HRV throughout the event and persisted for at least 24 hours post-event. The body was under continuous sympathetic dominance during rest as well as during each day of racing, implying each race day can be considered a physiological stress. This may, in turn, cause a disturbance in homeostasis and an increase in autonomic nervous system dysfunction. This has implications for further research, including dysrhythmia risk, and monitoring of athletes in advising a return to strenuous activity.


Author(s):  
Suraj Kumar Nayak ◽  
Rudra Dutt Shukla ◽  
Ipsita Panda ◽  
Biswajeet Champaty ◽  
Goutam Thakur ◽  
...  

In this study, the effect of slow and fast music on the heart rate variability and conduction pathway of the heart was studied. The results indicated an increase in the parasympathetic dominance as the volunteers were made to listen to music. The magnitude of the parasympathetic activity was higher when the volunteers were made to listen to fast music. This indicates that slow and fast music affected the sympatho-vagal balance in different proportions. The analysis of the ECG signal and wavelet transformed ECG signal suggested an alteration in the conduction pathway of the heart.


1983 ◽  
Vol 245 (5) ◽  
pp. R695-R700
Author(s):  
G. G. Power ◽  
R. A. Brace

We compared whole-body lymph flow responses with and without the autonomic nervous system intact in pentobarbital-anesthetized, acutely nephrectomized dogs. We measured left thoracic duct lymph flow, lymph and plasma protein concentrations, arterial and venous pressures, heart rate, and hematocrit in eight intact and six ganglion-blocked (hexamethonium, 15 mg/kg iv) animals. Ganglionic blockade lowered arterial pressure and heart rate but did not change lymph flow rate or the other variables. In the control and blocked groups at 30-min intervals, isotonic saline, lactated Ringer, and Dextran 70 solutions were serially infused, followed by hemorrhage and reinfusion of shed blood. Infusions or withdrawals were equal to 2% of body weight and were induced over 5-min intervals followed by 25 min of recovery. Lymph flow generally increased to a peak 5–7 min after each infusion was ended and then decayed back toward preinfusion levels; the extent of the rise in lymph flow, the time of the peak flow, and the extent of decay after the peak were unaffected by autonomic blockade. The absolute lymph flow rates in response to the infusions, hemorrhage, or blood infusion were not appreciably altered by ganglionic blockade. Thus the present studies provide little support to the hypothesis that the autonomic nervous system contributes to whole-body lymph flow.


1985 ◽  
Vol 69 (3) ◽  
pp. 251-258 ◽  
Author(s):  
D. S. Postma ◽  
J. J. Keyzer ◽  
G. H. Koëuter ◽  
H. J. Sluiter ◽  
K. De Vries

1. To determine whether an autonomic nervous system imbalance might underlie the nocturnal dyspnoea in patients with chronic airflow obstruction (CAO), we determined FEV1, sinus arrhythmia gap (SA gap), heart rate and urinary adrenaline and noradrenaline excretion every 4 h over 24 h. Measurements were performed in eight non-allergic patients with CAO and eight age- and sex-matched normal controls. 2. The amplitude of the circadian changes in FEV1 in patients and controls was 27 ± 2% and 7 ± 1% respectively (P < 0.001). 3. Both an increased SA gap and a decreased heart rate are features of increased vagal activity. This vagal activity was significantly increased in patients, compared with normal controls (difference P < 0.01), the difference being maximal at night. This increased activity might contribute to a bronchial obstruction in these patients. 4. Urinary adrenaline excretion was significantly higher by day than by night in both patients and normal controls (P < 0.01). The urinary levels of adrenaline in the patients were significantly decreased at all hours of observation as compared with levels in normal controls (P < 0.05). 5. Urinary noradrenaline levels were significantly lower in patients as compared with normal subjects (P < 0.01), and lower by night than by day. 6. Urinary histamine and Nτ-methylhistamine excretion were in the normal range in each individual. Urinary levels, however, were significantly higher in patients at all hours of observation (P < 0.05). No circadian rhythm was shown. Plasma cortisol levels showed a normal circadian variation, similar in patients and normal subjects. 7. Bronchial constriction in patients with CAO may be explained by an autonomic nervous system imbalance. Arguments favouring this hypothesis were the findings that CAO patients, in contrast with normal controls, showed lower urinary adrenaline and noradrenaline excretion throughout with a fall at night, and a higher vagal tone with an increase at night. Moreover, a higher histamine and Nτ-methylhistamine excretion both day and night existed in the patient group. A combination of these factors may lead to the nocturnal dyspnoea in patients with CAO.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shubham Debnath ◽  
Todd J. Levy ◽  
Mayer Bellehsen ◽  
Rebecca M. Schwartz ◽  
Douglas P. Barnaby ◽  
...  

Abstract Background The autonomic nervous system (ANS) maintains physiological homeostasis in various organ systems via parasympathetic and sympathetic branches. ANS function is altered in common diffuse and focal conditions and heralds the beginning of environmental and disease stresses. Reliable, sensitive, and quantitative biomarkers, first defined in healthy participants, could discriminate among clinically useful changes in ANS function. This framework combines controlled autonomic testing with feature extraction during physiological responses. Methods Twenty-one individuals were assessed in two morning and two afternoon sessions over two weeks. Each session included five standard clinical tests probing autonomic function: squat test, cold pressor test, diving reflex test, deep breathing, and Valsalva maneuver. Noninvasive sensors captured continuous electrocardiography, blood pressure, breathing, electrodermal activity, and pupil diameter. Heart rate, heart rate variability, mean arterial pressure, electrodermal activity, and pupil diameter responses to the perturbations were extracted, and averages across participants were computed. A template matching algorithm calculated scaling and stretching features that optimally fit the average to an individual response. These features were grouped based on test and modality to derive sympathetic and parasympathetic indices for this healthy population. Results A significant positive correlation (p = 0.000377) was found between sympathetic amplitude response and body mass index. Additionally, longer duration and larger amplitude sympathetic and longer duration parasympathetic responses occurred in afternoon testing sessions; larger amplitude parasympathetic responses occurred in morning sessions. Conclusions These results demonstrate the robustness and sensitivity of an algorithmic approach to extract multimodal responses from standard tests. This novel method of quantifying ANS function can be used for early diagnosis, measurement of disease progression, or treatment evaluation. Trial registration This study registered with Clinicaltrials.gov, identifier NCT04100486. Registered September 24, 2019, https://www.clinicaltrials.gov/ct2/show/NCT04100486.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Willem J Kop ◽  
Jennifer L Francis ◽  
Mark C Haigney ◽  
Ali A Weinstein ◽  
Phyllis K Stein ◽  
...  

Background : Autonomic nervous system (ANS) dysregulation increases risk of ventricular arrhythmias in patients with implantable cardioverter defibrillators (ICD). ANS dysregulation is common in depression and anxiety, but the relationship between these psychological factors and ANS dysregulation has not been investigated in ICD patients. Methods : ANS indices reflecting parasympathetic control of heart rate were obtained using heart rate variability (HRV) analyses in 44 ICD patients with documented coronary artery disease (age 62±9 yrs; ejection fraction 35.9±12.7%). Ambulatory 24-hr ECG recordings were used to calculate HRV (rMSSD and pNN50). Depression was assessed using the Beck Depression Inventory (BDI) and anxiety using the Taylor Manifest Anxiety Scale (TMA). Validated cut-off scores were used (depression: BDI≥10; anxiety: TMa≥9), and data were analyzed using Analysis of Variance. Results : ICD patients with depression symptoms (n=12) had significantly lower HRV markers of ANS parasympathetic activity (rMSSD:15.2±5.7 ms vs. 25.0±13.4 ms, p=0.002; pNN50:1.8±2.7% vs. 5.6±5.7%, p=0.006) than patients with low depression symptoms (n=32). High anxiety (n=10) was related to lower rMSSD (p =0.014). Comorbid depression and anxiety was associated with substantial HRV reduction (p<0.001) (Figure ). Conclusion : Depression and anxiety in ICD patients are associated with autonomic nervous system dysregulation (reduced HRV markers of parasympathetic control). Reduced parasympathetic activity may therefore contribute to the elevated risk of life-threatening cardiac arrhythmias in ICD patients with depression and anxiety. Figure 1. RMSSD among depression/anexity groups


Sign in / Sign up

Export Citation Format

Share Document