scholarly journals ON THE HEALTHY EFF ECT OF A.N. STRELNIKOVA’S PARADOXAL RESPIRATORY GYMNASTICS

2021 ◽  
Vol 15 (3) ◽  
pp. 314-323
Author(s):  
T. S. Sheptikina ◽  
◽  
N. N. Sentyabrev ◽  
S. A. Sheptikin ◽  
◽  
...  

Introduction. The paper discusses the significance of the current balance of the activity of the autonomic nervous system and a group of factors that affect it. The conditions that cause the need to promptly correct the functional status of the organism to relieve excessive tension of regulatory mechanisms are noted. Analysis of literature indicates that there are conflicting data on the benefits of breathing exercises as health remedies. Materials and methods. According to the study of the specific features of response of the autonomic nervous system, including heart rate variability, and changes in the functional status index, there is a positive effect of respiratory gymnastics by A. N. Strelnikova on the health. Research results. The data on specific features of the individual reactions of the autonomic nervous system to a set of breathing exercises by A. N. Strelnikova are presented. The positive influence of respiratory gymnastics on the indices of the regulatory mechanisms in terms of heart rate variability is noted. Conclusion. A. N. Strelnikova’s respiratory gymnastics can act as a corrector of the functional status of the body and its adaptive capabilities and as a health promotion solution by reducing the tension of the autonomic nervous system activity.

2020 ◽  
Vol 17 (9) ◽  
pp. 4385-4393
Author(s):  
S. Chandana ◽  
B. R. Purnima ◽  
Prabhu Ravikala Vittal

Modern games consists of digital gaming consoles that involves interaction with a user and has an interface to generate visual feedback through 2D/3D monitor. These games have several psychological side effects like loss of spatial awareness, back pains, insomnia, addiction, aggression, stress, and hypertension. Virtual reality (VR) Gaming is one of the most emerging and novel technologies in the field of entertainment. Evaluation of this new technology has become important in order to analyze the effects of its predecessors (2D and 3D gaming). The main focus of this paper is on detection of stress levels in individuals due to VR gaming and classify them depending on their sympathetic and parasympathetic dominance. This is done through acquisition of electrocardiogram (ECG) and photo plethysmograph signals (PPG) signals and extracting their time domain and frequency domain features before, during and after gaming (Fatma Uysal and Mahmut Tokmakçi, 2018. Evaluation of stress parameters based on heart rate variability measurement. Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey. [email protected], [email protected]., da Silva1, A.G.C.B., Arauj, D.N., et al, 2018. Increase in perceived stress is correlated to lower heart rate variability in healthy young subjects. Departamento de Fisioterapia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil. s/n., 81531–980, Curitiba, Parana, Brazil. E-mail: [email protected].). The physiological signal variation is analyzed by performing Heart Rate Variability (HRV) analysis over ECG signals which is one of the fast emerging methods in non-invasive research and clinical tools for assessing autonomic nervous system function (Juan Sztajzel, 2004. Heart rate variability: Aa non-invasive electrocardiographic method to measure the autonomic nervous system. Cardiology Center and Medical Policlinics, University Hospital, Geneva, Switzerland, SWISS MED WKLY 2004;134:514–522. www.smw.ch). Pulse-transmissiontime-variability (PTTV), which is extracted, has high coherence with heart rate variability and is also used as an objective measure of stress. In this paper we obtain the response of an individual during VR gaming and correlate them with the HRV/PTT parameters. The game chosen for the data acquisition was ‘VR city view rope crossing-360 android VR,’ during which data recording is done. It was found that there was a quantitative increase in physiological stress when individuals were exposed to virtual high heights in comparison with time relative to unaltered viewing. Mean Heart rate showed a significant increase during gaming for both boys and girls which indicates that the body is under the influence of a sympathetic activity like a physical exercise.


2021 ◽  
Author(s):  
Anton Swart ◽  
Demitri Constantinou

Abstract Background: Acute bouts of ultra-endurance exercise may cause an acute reduction in cardiac function, causing a physiological cascade which releases cardiac biomarkers. This study set out to determine the cardiac stress and recovery of participation in a three-day ultra-endurance mountain biking event of athletes using heart rate variability (HRV) as an outcome measure. Sixteen healthy participants (male and female) participating in a three-day ultra-endurance mountain biking event underwent a five-minute resting electrocardiography (ECG) recording in a supine position. Heart rate variability measurements were recorded two days before the race (baseline testing), after each race day, and at 24-hour post-event (recovery). Results: Time-domain and frequency domain measures showed significant (p≤0.05) changes from baseline in HRV parameters after each race day. The significant changes in HRV parameters reflected an increase in sympathetic activity after each day of the event. Our data revealed that the mean HR and RR variability variables did not return to baseline value after 24-hours of recovery, reflecting autonomic nervous system dysfunction, and that changes persisted for at least 24-hours post-event.Conclusion: Our study shows that competing in an ultra-endurance mountain bike event led to diminished vagal activity and a decrease in HRV throughout the event and persisted for at least 24-hours post-event. The body was under continuous sympathetic dominance during rest as well as during each day of racing, implying each race day can be considered a physiological stress. This may, in turn, cause a disturbance in homeostasis and an increase in autonomic nervous system dysfunction. This has implications for further research, including dysrhythmia risk, and monitoring of athletes in advising a return to strenuous activity.


2020 ◽  
Author(s):  
Anton Swart ◽  
Demitri Constantinou

Objectives Our study set out to determine the cardiac stress and recovery of participation in a three-day ultra-endurance mountain biking event of athletes using heart rate variability (HRV) as an outcome measure. Methods Sixteen healthy participants (male and female) participating in a three-day ultra-endurance mountain biking event underwent a five-minute resting ECG recording in a supine position. Heart rate variability measurements were recorded two days before the race (baseline testing), after each race day, and at 24-hour post-event (recovery). Results Time-domain and frequency domain measures showed significant (p≤0.05) changes from baseline in HRV parameters after each race day. Our study found significant changes in HRV parameters, all of which reflected an increase in sympathetic activity after each day of the event. These data also revealed that the mean HR and RR variability variables did not return to baseline value after 24-hours of recovery, reflecting autonomic nervous system dysfunction, and that changes persisted for at least 24-hours post-event. Conclusion Our study shows that competing in an ultra-endurance mountain bike event led to diminished vagal activity and a decrease in HRV throughout the event and persisted for at least 24 hours post-event. The body was under continuous sympathetic dominance during rest as well as during each day of racing, implying each race day can be considered a physiological stress. This may, in turn, cause a disturbance in homeostasis and an increase in autonomic nervous system dysfunction. This has implications for further research, including dysrhythmia risk, and monitoring of athletes in advising a return to strenuous activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ya Liu ◽  
Yuanyuan Huang ◽  
Jing Zhou ◽  
Guixiang Li ◽  
Jun Chen ◽  
...  

Reduced heart rate variability (HRV) and dysfunction of the autonomic nervous system (ANS) have been observed in schizophrenia patients. HRV parameters of schizophrenia patients in the resting state have been well-documented; however, these parameters of schizophrenia patients who experience continuous psychophysiological stress remain unclear. The objective of this study was to systematically explore the linear and nonlinear HRV parameters between schizophrenia patients and normal controls and to detect the adaptive capabilities of HRV of schizophrenia patients during the stimulation tests of autonomic nervous system. Forty-five schizophrenia patients and forty-five normal controls, matched for age, sex and body mass index, completed a 14 min ANS test. Thirteen linear and nonlinear HRV parameters of all subjects under the ANS test were computed and statistically analyzed between groups and between sessions. The STROBE checklist was adhered to in this study. All time-domain HRV features in the ANS test were significantly different between schizophrenia patients and normal controls (p < 0.01). The schizophrenia patients showed significantly low values in the Poincaré indices, which revealed significantly decreased heart rate fluctuation complexity compared with that of normal controls (p < 0.001). In addition, the normal controls, not schizophrenia patients, showed significant differences between the recovery and stress states in the parameters of low frequency, high frequency, and nonlinear dynamics. Schizophrenia patients showed autonomic dysfunction of the heart in a series of stimulation tests of the autonomic nervous system and could not regain normal physiological functions after stress cessation. Our findings revealed that the dynamic parameters of HRV in psychophysiological stress are sensitive and practical for a diagnosis of schizophrenia.


2016 ◽  
Vol 17 (5) ◽  
pp. 498
Author(s):  
Alyssa Conte Da Silva ◽  
Juliana Falcão Padilha ◽  
Jefferson Luiz Brum Marques ◽  
Cláudia Mirian De Godoy Marques

Introdução: Existem poucos estudos que evidenciam a manipulação vertebral relacionada à modulação autonômica cardíaca. Objetivo: Revisar a literatura sobre os efeitos da manipulação vertebral sobre a modulação autonômica cardíaca. Métodos: Foi realizada uma busca bibliográfica nas bases de dados da saúde Medline, Pubmed e Cinahl, no período correspondido entre setembro e novembro de 2014. Foram utilizados os descritores em inglês Spinal Manipulation, Cardiac Autonomic Modulation, Autonomic Nervous System, Heart Rate Variability, além de associações entre eles. Resultados: Foram encontrados 190 artigos, sendo excluídos 39 por serem repetidos, restando 151. Destes, 124 não se encaixaram nos critérios de inclusão e após leitura crítica e análise dos materiais foram selecionados 7 artigos. Grande parte dos estudos revelou que a manipulação da coluna, independente do segmento, demonstra alterações autonômicas, tanto em nível simpático quanto parassimpático. Conclusão: Existem diferentes metodologias para avaliação da modulação autonômica cardíaca, sendo a Variabilidade da Frequência cardíaca através do eletrocardiograma a mais utilizada. A manipulação vertebral exerceu influência, na maioria dos artigos, sobre a modulação autonômica cardíaca.Palavras-chave: manipulação da coluna, sistema nervoso autônomo, variabilidade da frequência cardíaca. 


2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


1999 ◽  
Vol 29 (6) ◽  
pp. 590 ◽  
Author(s):  
Hae Ok Jung ◽  
Ki Bae Seung ◽  
Hyo Young Lim ◽  
Dong Heon Kang ◽  
Ki Yuk Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document