scholarly journals Characterization of Landslide geometry using Seismic Refraction Tomography in the GayoLues, Indonesia

2021 ◽  
Vol 3 (2) ◽  
pp. 148-154
Author(s):  
Muzakir Zainal ◽  
Badrul Munir ◽  
Marwan Marwan ◽  
Muhammad Yanis ◽  
Akmal Muhni

Landslides are the most common geological phenomenon in Indonesia.The event is damage to public infrastructure, and fatalities was a big impact. Therefore, mapping the geometry of landslides is a part of the mitigation effort possible by geophysical methods. In this research, we applied seismic refraction tomography (SRT) to study the geometry of the sliding zone from the landslide event.TheNational Disaster Management Authority reported that the area was frequently occurring landslide disaster, i.e. 2018, 2019 and 2020 which caused the public infrastructure and obstructed the road access from the central to the west of Aceh. The SRT was measured in two profileslong the road.Data measurements were conducted on the side of the Babahrot - GayoLues road section that had experienced landslides.Measurements were made using the Seismograph PASI 16S24-P and 24 geophones to obtain a 92-meterlong profile with 2 meter spacing between the geophones. P-wave velocity data modeling is done using ZondST2D software.The results of modeling profiles 1 and 2 describe three different subsurface layers.The SRT profile 1 model consists of slate (0.2 - 0.7 km/s), clay (0.8 - 1.3 km/s), and sandy clay (1.4 - 1.9 km/s).While, the model of profile 2 consists of slate (0.5 - 1.0 km/s), clay (1.1 - 1.6 km/ s), and sandy clay (1.7 - 2.5 km/s).The contrasting wave velocity model shows that the SRT method can be used in landslide studies as a reference in determining the mechanism of the landslide system.

2020 ◽  
Vol 25 (3) ◽  
pp. 415-423
Author(s):  
Ahmed Lachhab ◽  
El Mehdi Benyassine ◽  
Mohamed Rouai ◽  
Abdelilah Dekayir ◽  
Jean C. Parisot ◽  
...  

The tailings of Zeida's abandoned mine are found near the city of Midelt, in the middle of the high Moulouya watershed between the Middle and the High Atlas of Morocco. The tailings occupy an area of about 100 ha and are stored either in large mining pit lakes with clay-marl substratum or directly on a heavily fractured granite bedrock. The high contents of lead and arsenic in these tailings have transformed them into sources of pollution that disperse by wind, runoff, and seepage to the aquifer through faults and fractures. In this work, the main goal is to identify the pathways of contaminated water with heavy metals and arsenic to the local aquifers, water ponds, and Moulouya River. For this reason, geophysical surveys including electrical resistivity tomography (ERT), seismic refraction tomography (SRT) and very low-frequency electromagnetic (VLF-EM) methods were carried out over the tailings, and directly on the substratum outside the tailings. The result obtained from combining these methods has shown that pollutants were funneled through fractures, faults, and subsurface paleochannels and contaminated the hydrological system connecting groundwater, ponds, and the river. The ERT profiles have successfully shown the location of fractures, some of which extend throughout the upper formation to depths reaching the granite. The ERT was not successful in identifying fractures directly beneath the tailings due to their low resistivity which inhibits electrical current from propagating deeper. The seismic refraction surveys have provided valuable details on the local geology, and clearly identified the thickness of the tailings and explicitly marked the boundary between the Triassic formation and the granite. It also aided in the identification of paleochannels. The tailings materials were easily identified by both their low resistivity and low P-wave velocity values. Also, both resistivity and seismic velocity values rapidly increased beneath the tailings due to the compaction of the material and lack of moisture and have proven to be effective in identifying the upper limit of the granite. Faults were found to lie along the bottom of paleochannels, which suggest that the locations of these channels were caused by these same faults. The VLF-EM surveys have shown tilt angle anomalies over fractured areas which were also evinced by low resistivity area in ERT profiles. Finally, this study showed that the three geophysical methods were complementary and in good agreement in revealing the pathways of contamination from the tailings to the local aquifer, nearby ponds and Moulouya River.


1984 ◽  
Vol 74 (4) ◽  
pp. 1263-1274
Author(s):  
Lawrence H. Jaksha ◽  
David H. Evans

Abstract A velocity model of the crust in northwestern New Mexico has been constructed from an interpretation of direct, refracted, and reflected seismic waves. The model suggests a sedimentary section about 3 km thick with an average P-wave velocity of 3.6 km/sec. The crystalline upper crust is 28 km thick and has a P-wave velocity of 6.1 km/sec. The lower crust below the Conrad discontinuity has an average P-wave velocity of about 7.0 km/sec and a thickness near 17 km. Some evidence suggests that velocity in both the upper and lower crust increases with depth. The P-wave velocity in the uppermost mantle is 7.95 ± 0.15 km/sec. The total crustal thickness near Farmington, New Mexico, is about 48 km (datum = 1.6 km above sea level), and there is evidence for crustal thinning to the southeast.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2835
Author(s):  
Yawar Hussain ◽  
Rogerio Uagoda ◽  
Welitom Borges ◽  
Renato Prado ◽  
Omar Hamza ◽  
...  

Reliable characterization of the karst system is essential for risk assessment where many associated hazards (e.g., cover-collapse dolines and groundwater pollution) can affect natural and built environments, threatening public safety. The use of multiple geophysical approaches may offer an improved way to investigate such cover-collapse sinkholes and aid in geohazard risk assessments. In this paper, covered karst, which has two types of shallow caves (vadose and fluvial) located in Tarimba (Goias, Brazil), was investigated using various geophysical methods to evaluate their efficiency in the delineation of the geometry of sediments filled sinkhole. The methods used for the investigation were Electrical Resistivity Tomography (ERT), Seismic Refraction Survey (SRS), Seismic Refraction Tomography (SRT) and the Very Low Frequency Electromagnetic (VLF-EM) method. The study developed several (2D) sections of the measured physical properties, including P-wave velocity and electrical resistivity, as well as the induced current (because of local bodies). For the analysis and processing of the data obtained from these methods, the following approaches were adopted: ERT inversion using a least-square scheme, Karous-Hjelt filter for VLF-EM data and time-distance curves and Vp cross-sections for the SRS. The refraction data analysis showed three-layered stratigraphy topsoil, claystone and carbonate bedrock, respectively. The findings obtained from ERT (three-layered stratigraphy and sediment-filled doline), as well as VLF-EM (fractured or filled caves as a positive anomaly), were found to be consistent with the actual field conditions. However, the SRS and SRT methods did not show the collapsed material and reached the limited the depth because of shorter profile lengths. The study provides a reasonable basis for the development of an integrated geophysical approach for site characterization of karst systems, particularly the perched tank and collapse doline.


2021 ◽  
Author(s):  
Myriam Lajaunie ◽  
Céleste Broucke ◽  
Jean-Philippe Malet ◽  
Clément Hibert ◽  
Guy Sénéchal ◽  
...  

<div> <p>Bedrock geometry, geological discontinuities, geotechnical units and shear surfaces/bands control the deformation patterns and the mechanisms of slope instabilities. Seismic P-wave refraction tomography is useful to detect these features because P-wave velocity significantly decreases in fractured and weathered rocks relative to consolidated ones, and because lateral changes of velocity can highlight alternation of dipping fracture zones and consolidated rocks. Acquiring this information at high spatial resolution is of paramount importance to model landslide behaviour. </p> </div><div> <p>The Viella slope instability (Hautes-Pyrénées, France) is a complex and deep-seated (> 80 m) landslide which has reactivated in Spring 2018 as a consequence of both a 100-yr return period flash flood (Bastan torrent) which affects the lower part of the slope, and a major rockslide (> 100.000 m<sup>3</sup>) modifying the stress conditions in the upper part. The landslide, which covers an area of ca. 650 000 m², is primarily composed of schists with different degrees of weathering, forming several kinematic units with surface velocities in the range [0.5 – 5] mm.month<sup>-1</sup>. Many buildings and infrastructures (roads, bridge) are progressively damaged (cracks, progressive tilting) and scarps and lobes develop at the surface delineating the kinematic units.  </p> </div><div> <p>In order to model the evolution of the landslide and design possible mitigation measures (drainage, slope reprofiling), a 3D seismic survey has been carried out in summer 2020. The survey was designed to provide a highly detailed velocity model untill 100 m depth, highlighting possible lithological and mechanical contrasts as well as water preferential flow paths. The acquisition was carried out using 71 3C miniaturized seismic sensors buried at ca. 30 cm in the ground and spaced with an average intertrace of 70 m in accordance with slope topography. IGU16HR-3C 5Hz SmartSolo geophones of the DENSAR service (EOST) were used. The seismic array was recording continuously from June, 22nd to July, 21st 2020 at a sampling rate of 500 Hz. 370 controlled seismic sources were triggered at 122 locations using blank 12-gauge shotgun cartridges, Seismic Impulse Source Systemshots, 90-kg Propelled Energy Generator shots and a Mechatronics Lightning source generating P and S-waves with mono-frequency and sweep signals between 5 and 60 Hz of maximum 80 s length.  </p> </div><div> <p>We present the results of this active P-wave traveltime tomography. We first discuss the quality of the recorded signals related to each different type of source, given the noise and attenuation conditions at Viella. Because the signals were challenging to detect a methodology based on manual picking was used, supported by automatic detection tools and considerations regarding the network geometry in an a priori velocity model.  </p> </div><div> <p>The P-wave model was obtained using the inversion library pyGIMLI, which permits an accurate description of the topography, and provides a spatial discretization adapted to the problem. To supplement and constrain the interpretation of the P-wave velocity model, borehole information as well as a 3D resistivity model of the zone are available. With regards to these data, the geometric features and physical parameters of the main geological structures of the landslide are discussed. </p> </div>


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Raju Sarkar ◽  
Sreevalsa Kolathayar ◽  
Dowchu Drukpa ◽  
Kinley Choki ◽  
Shrijana Rai ◽  
...  

AbstractIt is essential to understand the soil characteristics of the subsurface layers for any engineering construction. In difficult terrains like hilly areas, conventional methods of investigation are expensive and difficult to conduct. It calls for nondestructive testing methods to get reliable estimates of subsurface properties. In the present study, seismic refraction tomography (SRT) technique and multichannel analysis of surface waves (MASW) methods were carried out along five selected profiles in Phuentsholing region of Bhutan Himalaya. The profile length ranges from 37 to 81.5 m, and depth of imaging down to 10 m. While the SRT data imaged the P-wave velocity (Vp) structures, the MASW imaged the shear wave velocity (Vs) structures. The P-wave images provide a fair knowledge of geological layers, while the MASW images provide S-wave velocity structures (Vs). These results are useful to estimate soil parameters, like the density, Poisson’s ratio, Young’s modulus, shear modulus, N-value and the ultimate bearing capacity. The seismic images reveal the presence of sand, sandy clay, gravels and shale layers below the selected sites. Bhutan Himalayas being seismically vulnerable, the obtained results in terms of shear wave velocity were accustomed to categorize the sites as per NEHRP site classes, and a ground response analysis was performed to determine the reliable amplification factors. From the study, it is suggested that the engineering construction is feasible at all the sites except in one site, where an indication of saturated soil is observed which is vulnerable for liquefaction, and ground needs to be improved before construction at that site.


2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Rose Nadia ◽  
Rosli Saad ◽  
Nordiana Muztaza ◽  
Nur Azwin Ismail ◽  
Mohd Mokhtar Saidin

In this study, correlation is made between seismic P-wave velocities (Vp) with standard penetration test (SPT-N) values to produce soil parameter estimation for engineering site applications. A seismic refraction tomography (SRT) line of 69 m length was spread across two boreholes with 3 m geophones spacing. The acquired data were processed using Firstpix, SeisOpt2D and surfer8 software. The Vp at particular depths were pinpointed and correlated with geotechnical parameters (SPT-N values) from the borehole records. The correlation between Vp and SPT-N values has been established. For cohesive soils, it is grouped into three categories according to consistencies; stiff, very stiff and hard, having velocity rangesof 575-314 m/s, 808-1483 m/s and 1735-2974 m/s, respectively. For non-cohesive soils, it is also divided into three categories based on the denseness as loose, medium dense and dense with Vp ranges of 528-622 m/s, 900-2846 m/s and 2876-2951 m/s, respectively


Author(s):  
GN Egwuonwu ◽  
EI Okoyeh ◽  
DC Agarana ◽  
EG Nwaka ◽  
OB Nwosu ◽  
...  

Two-dimensional Electrical Resistivity Tomography (2DERT) and Seismic Refraction Tomography (2DSRT) were concurrently applied in assessment of a gully site with the view of assessing its stability and risk level. Eight profile lines oriented parallel and perpendicular to the boundary of the gully were surveyed. As a result, apparent resistivity model tomograms in the range of 1-9,000 and p-wave velocity models in the range of 300-700 were obtained from the two techniques respectively. Interpretation of the models obtained show predominance of unconsolidated clay, shale intercalates, clayey sand, sandy clay and weathered lateritic soil at shallow depths. Low amplitude undulating refracting layers, landslide slip subsurface and lose horizons were also delineated at shallow depths. The predominance of weak, clayey and unconsolidated lithology at the gully site suggests evidence of unstable gravitational equilibrium which imply environmental hazard. The plausible deductions made from the two


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Yuzhu Liu ◽  
Xinquan Huang ◽  
Jizhong Yang ◽  
Xueyi Liu ◽  
Bin Li ◽  
...  

Thin sand-mud-coal interbedded layers and multiples caused by shallow water pose great challenges to conventional 3D multi-channel seismic techniques used to detect the deeply buried reservoirs in the Qiuyue field. In 2017, a dense ocean-bottom seismometer (OBS) acquisition program acquired a four-component dataset in East China Sea. To delineate the deep reservoir structures in the Qiuyue field, we applied a full-waveform inversion (FWI) workflow to this dense four-component OBS dataset. After preprocessing, including receiver geometry correction, moveout correction, component rotation, and energy transformation from 3D to 2D, a preconditioned first-arrival traveltime tomography based on an improved scattering integral algorithm is applied to construct an initial P-wave velocity model. To eliminate the influence of the wavelet estimation process, a convolutional-wavefield-based objective function for the preprocessed hydrophone component is used during acoustic FWI. By inverting the waveforms associated with early arrivals, a relatively high-resolution underground P-wave velocity model is obtained, with updates at 2.0 km and 4.7 km depth. Initial S-wave velocity and density models are then constructed based on their prior relationships to the P-wave velocity, accompanied by a reciprocal source-independent elastic full-waveform inversion to refine both velocity models. Compared to a traditional workflow, guided by stacking velocity analysis or migration velocity analysis, and using only the pressure component or other single-component, the workflow presented in this study represents a good approach for inverting the four-component OBS dataset to characterize sub-seafloor velocity structures.


Author(s):  
Rungroj Arjwech ◽  
Mark E. Everett ◽  
Sakhon Saengchomphu ◽  
Kittipong Somchat ◽  
Potpreecha Pondthai

The increasing demand for gypsum as a raw material for construction projects motivates exploration for additional reserves. Electrical resistivity tomography (ERT) and seismic refraction geophysical methods, augmented with borehole and laboratory measurements on core samples, are used here to delineate the top, bottom and lateral boundaries of an important gypsum ore deposit in Thailand, an economically developing region. The gypsum-bearing formation is found throughout the study area to have an irregular upper boundary on account of karstic dissolution processes. The deeper transition from gypsum to anhydrite, however, is not constrained by the measurements. The P-wave velocity measured in the field is consistent with the core specimen measurements. The electrical resistivity of the core specimens, however, is substantially higher than the values measured in the field. The specimen measurements may depend on the presence of micro cracks, whereas electrical resistivity in the field may be affected by the enclosing clay-rich materials.


Sign in / Sign up

Export Citation Format

Share Document