scholarly journals Dynamic Deformation Mechanisms and In-situ Thermal Response of 7050 Al Alloy at High Strain Rates

2020 ◽  
Author(s):  
Francis Tetteh ◽  
Solomon Boakye-Yiadom ◽  
Solomon Duntu ◽  
Ahmed Elsayed Moter
1996 ◽  
Vol 434 ◽  
Author(s):  
J. D. Rigney

AbstractThe mechanisms contributing to the fracture resistance of refractory metal intermetallic composites containing a BCC metallic phase (niobium) were investigated using model Nb-Si laminates and in situ composites. The controlling influence of ductile phase yield strength and fracture behavior were investigated by varying laminate processing parameters, and/or altering temperatures and applied strain rates during fracture experiments on all materials. The fracture behavior of “ductile” constituents were found to be influenced by phase grain size, solid solution content, constraint (as influenced by interfacial bond strengths), and the testing condition (high strain rates and low temperatures). The measured fracture resistance, when compared to theoretical models, was shown to be controlled by the “toughness” of the “ductile” phase and independent of the fracture behavior promoted (cleavage and ductile). The loss in ductility due to cleavage by high constraint, high strain rates and/or low temperatures was compensated by high yield and cleavage fracture stresses in order to provide a level of toughening similar to that contributed by ligaments which failed with lower yield stresses and greater strains.


2021 ◽  
pp. 159767
Author(s):  
Kartheek. S.M. Sonti ◽  
Biswaranjan Dash ◽  
K.V. Vamsi ◽  
H. Bandyopadhyay ◽  
B. Ravisankar ◽  
...  

2016 ◽  
Vol 18 (5) ◽  
pp. 3472-3481 ◽  
Author(s):  
Nicolas Candau ◽  
Laurent Chazeau ◽  
Jean-Marc Chenal ◽  
Catherine Gauthier ◽  
Etienne Munch

In situ WAXS experiments combined with a thermodynamic approach allowed for the first time a comparative study of strain induced crystallization of natural and synthetic rubber at high strain rates.


Sign in / Sign up

Export Citation Format

Share Document