Design Optimization Of Autonomous Steering Control Schemes For Articulated Vehicles

2021 ◽  
Author(s):  
Jiangtao Yu ◽  
Tarun Sharma ◽  
Yuping He
Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


2016 ◽  
Vol 17 (6) ◽  
pp. 576-586 ◽  
Author(s):  
Kyong-il Kim ◽  
Hsin Guan ◽  
Bo Wang ◽  
Rui Guo ◽  
Fan Liang

2011 ◽  
Vol 230-232 ◽  
pp. 549-553 ◽  
Author(s):  
Shu Wen Zhou ◽  
Si Qi Zhang ◽  
Guang Yao Zhao

Handling behaviour of articulated vehicles combination is more complex and less predictable than that of non-articulated vehicles. It is usually difficult for drivers to maneuver a tractor semi-trailer during high speed emergency braking on split-mu road surface. Braking on this type of road surface, the conventional anti-lock braking systems will cause the vehicle deviate from the desired direction, or overmuch stopping distance. In this paper, a 3-dof of tractor semi-trailer model was used to produce desired yaw rates which were compared with actual yaw rates. An active front steering control and four-channel ABS were integrated to improve the tractor semi-trailer lateral stability while braking on split-mu road surface, which will produce maximum braking force. A full function tractor semi-trailer model was built and assembled in multi-body dynamics software, and the dynamic analysis was performed on split-mu road surface. The simulation results show that the integrated system can improve the tractor semi-trailer lateral stability under braking on split-mu road surface.


Author(s):  
Naser Esmaeili ◽  
Reza Kazemi ◽  
S Hamed Tabatabaei Oreh

As demands increase for goods transportation services, long articulated vehicles are introduced as a viable alternative to conventional heavy-duty vehicles. Nowadays, steering control systems are commonly used for enhancing the stability and handling of articulated vehicles. As situations become more difficult for the movement of a vehicle, the ability of the steering actuators decreases and it will not be possible to use this controller alone in critical maneuvers. Another effective way to adjust the directional dynamics of a long articulated vehicle is the simultaneous application of the braking and steering systems. In a situation where the vehicle is close to the ultimate steering limit, it is desirable to reduce the speed, and the steering system can be strengthened through the intervention of the braking system. In this article, a 23 degree of freedom dynamic model of the long articulated vehicle has been developed in MATLAB software. After determining the reference control variables, we will design a sliding mode controller to steer the tractor’s front axle and the semi-trailer’s rear axles. After defining and setting the weight coefficients using a performance indicator, we will design an integrated controller in a way that if maneuvers become more difficult to perform and the efficiency of the steering actuators decreases, the braking forces exerted on the tractor’s rear axle and the semi-trailer’s rear axles will take a share in regulating the vehicle’s movement. The main achievement of this article is the introduction of a new method to integrate braking and steering control systems in long articulated vehicles. The paper aims to prove that only if manoeuvres become more difficult to perform and the performance of steering actuators decreases, then braking forces can take part in regulating the vehicle’s movement.


2020 ◽  
Vol 27 (5) ◽  
pp. 565
Author(s):  
Bo Wang ◽  
Hongshan Zha ◽  
Guoqi Zhong ◽  
Qin Li ◽  
Xiaobo Wang

Sign in / Sign up

Export Citation Format

Share Document