scholarly journals Scale-invariant image feature transformation technology

2020 ◽  
Vol 1 (37) ◽  
pp. 74-78
Author(s):  
R. H. Zatserkovnyi ◽  
2011 ◽  
Vol 65 ◽  
pp. 497-502
Author(s):  
Yan Wei Wang ◽  
Hui Li Yu

A feature matching algorithm based on wavelet transform and SIFT is proposed in this paper, Firstly, Biorthogonal wavelet transforms algorithm is used for medical image to delaminating, and restoration the processed image. Then the SIFT (Scale Invariant Feature Transform) applied in this paper to abstracting key point. Experimental results show that our algorithm compares favorably in high-compressive ratio, the rapid matching speed and low storage of the image, especially for the tilt and rotation conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mengxi Xu ◽  
Yingshu Lu ◽  
Xiaobin Wu

Conventional image classification models commonly adopt a single feature vector to represent informative contents. However, a single image feature system can hardly extract the entirety of the information contained in images, and traditional encoding methods have a large loss of feature information. Aiming to solve this problem, this paper proposes a feature fusion-based image classification model. This model combines the principal component analysis (PCA) algorithm, processed scale invariant feature transform (P-SIFT) and color naming (CN) features to generate mutually independent image representation factors. At the encoding stage of the scale-invariant feature transform (SIFT) feature, the bag-of-visual-word model (BOVW) is used for feature reconstruction. Simultaneously, in order to introduce the spatial information to our extracted features, the rotation invariant spatial pyramid mapping method is introduced for the P-SIFT and CN feature division and representation. At the stage of feature fusion, we adopt a support vector machine with two kernels (SVM-2K) algorithm, which divides the training process into two stages and finally learns the knowledge from the corresponding kernel matrix for the classification performance improvement. The experiments show that the proposed method can effectively improve the accuracy of image description and the precision of image classification.


2013 ◽  
Vol 427-429 ◽  
pp. 1999-2004 ◽  
Author(s):  
Huai Ming Yang ◽  
Jin Guang Sun

A new face image feature extraction and recognition algorithm based on Scale Invariant Feature Transform (SIFT) and Local Linary Patterns (LBP) is proposed in this paper. Firstly, a set of keypoints are extracted from images by using the SIFT algorithm; Secondly, each keypoint is described by LBP patterns; Finally, a combination of the global and local similarity is adopted to calculate the matching results for face images. Calculation results show that the algorithm can reduce the matching dimension of feature points, improve the recognition rate and perspective; it has nice robustness against the interferences such as rotation, lighting and expression.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yu Zhang ◽  
Ruofei Zhong ◽  
Yongrong Li ◽  
Haili Sun

The development of information technology and computer science has put forward higher requirements on the intelligence of deformation monitoring. We study a method based on image deformation analysis, which uses Scale-Invariant Feature Transform (SIFT) to extract image feature points after preprocessing the acquired images, applies All-Pixels Matching (APM) method to the sequence images to do further high-precision matching to achieve the accuracy of subpixels, and finally solves the deformation variables according to the relationship of the real size of the reference target and its pixel. Wavelet analysis and least squares are used to improve the image quality and matching accuracy. Based on this method, we design and develop a new remotely automated deformation monitoring system. In this paper, we introduce the algorithm principle of deformation analysis, the integration of the system, and the engineering application example of the monitoring system. The monitoring accuracy of the system satisfying 0.1 mm within 10 m and 0.8 mm within 60 m is verified in the simultaneous comparison observation according to the high-precision total station, which illustrates the effectiveness of the present deformation analysis method and monitoring system and also has the characteristics of low monitoring cost and high degree of automation.


Using SWT (Stationary Wavelet Change) & SIFT (Scale Invariant Feature Transformation) we attempted to increase the number of features recognized & matched with digital image for forgery identification. Digital image received preferable match for forged area. We collected the forgery area using SIFT& SURF for identification of forgery. We used DWT (Discrete Wavelet Transform) w.r.t. SIFT & SW to subdue absence of translation invariance..


Sign in / Sign up

Export Citation Format

Share Document