scholarly journals Assessing low energy school buildings using the new Building Bulletin 101

2019 ◽  
pp. 43-52
Author(s):  
Yingchun Ji ◽  
Jiangtao Du

This paper reports an assessment of a school building design using the newly published Building Bulletin 101 2018. The requirements on thermal comfort and CO2 based indoor air quality from this new guidance document are very different from its earlier version published in 2006. Existing research reported that the new requirements are much tougher to meet compared with the previous version. The aim of this research is to examine whether design alternatives on an existing school building with 10 learning and teaching spaces can help in passing the new requirements using dynamic thermal simulation tool - IESVE. It is found that promoting ventilation, shading and night purging can all help mitigating overheating in the ten learning and teaching spaces evaluated. With the ‘as built’ condition, these learning and teaching spaces failed all three overheating criteria from the new BB101. Promoting ventilation can help some of the spaces pass the overheating occurrence criterion but not the overheating severity criteria. With added shading to block excessive solar gains, half of the evaluated spaces were able to pass the thermal comfort requirement. Boosting the night purging also helps to some extent in bridging the gap against the target requirements on overheating severity, however, there are still spaces which will not pass the comfort requirement. This may indicate that natural ventilation itself may not be able to provide thermal comfort for the given design. CO2 based indoor air quality requirements are less of an issue as higher CO2 concentrations always happen when the outdoor air temperature is low, boosting ventilation using automatic or manual control can easily resolve this. The research also highlights that one of the overheating criteria is much more difficult to meet, the appropriateness of this criterion is therefore in question. As the new BB101 was only launched very recently, it will be subject to further tests and evaluations in order to examine whether it fits for purpose.

2019 ◽  
Vol 887 ◽  
pp. 500-507
Author(s):  
Matthias Schuss ◽  
Mahnameh Taheri ◽  
Ulrich Pont ◽  
Ardeshir Mahdavi

The present contribution, reports on the results of ongoing research efforts on performance assessment of a number of buildings designed by the Austrian architect, Konrad Frey. He is a pioneer of energy-efficient architecture, and his designs, those dating back to the 1970s, adapted the principles of modern solar houses. The current study focuses on the Kindergarten Hart, which was especially designed focusing on the availability of cross ventilation option in building. For the purpose of analyzing thermal comfort, indoor air quality, and the occupants’ adaptive actions with respect to natural ventilation, we conducted long-term monitoring under summer and winter conditions. The monitoring efforts covered indoor and outdoor environmental conditions, as well as the state of windows. Thereby, study of the monitored dataset provides a better understanding of the building performance. Moreover, it makes it possible to examine whether the architect’s expectations in terms of thermal comfort and indoor air quality levels are fulfilled or not. In addition, investigation of the occupants’ interactions with windows, together with indoor and outdoor environmental conditions, assists understanding of possible associations between the window opening/closing and environmental parameters, as well as potential optimization of the control-oriented actions.


Author(s):  
M. F. Mohamed ◽  
M. Behnia ◽  
S. King ◽  
D. Prasad

Cross ventilation is a more effective ventilation strategy in comparison to single-sided ventilation. In the NSW Residential Flat Design Code1 (RFDC) the majority of apartments are required to adopt cross ventilation. However, in the case of studio and one-bedroom apartments, it is acknowledged that single-sided ventilation may prevail. Deep plan studio and one-bedroom apartments may achieve lower amenity of summer thermal comfort and indoor air quality where mechanical ventilation is not provided by air conditioning. Since compliance with the code may allow up to 40% of apartments in a development in Sydney to be single sided, it is important to understand the natural ventilation performance of such apartments. The objective of this paper is to investigate the natural ventilation potential in single-sided ventilated apartments to improve indoor air quality and thermal comfort. This investigation includes simulating various facade treatments involving multiple opening and balcony configurations. Balcony configurations are included in this study because, in Sydney, a balcony is a compulsory architectural element in any apartment building. The study uses computational fluid dynamics (CFD) software to simulate and predict the ventilation performance of each apartment configuration. This study suggests that properly configured balconies and openings can significantly improve indoor ventilation performance for enhanced indoor air quality and thermal comfort, by optimizing the available prevailing wind. However, it is important to note that inappropriately designed fac¸ade treatments also could diminish natural ventilation performance.


Jurnal IPTEK ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 150-160
Author(s):  
Fuad Rizal

ABSTRACT Quality of natural ventilation in low rise public housing in Jakarta tends to be low. Situation mentioned above presumably caused by several case, among other form and unadequate opening placement, unadequate furniture placement, form and orientation of public housing mass and minimum building protection from sun radiation. Whereas natural ventilation have an importent role in increasing indoor air quality, increasing occupant healthy and help increasing electricity consumption eficiency. The objective of this research is attempt solving natural ventilation problems in low rise public housing architecturally through designs that could used for occupant activity precisely and presenting good natural ventilation simultaneously so it can support occupant activity in public housing as efficiently, comfortable, healthy and secure. Research begins with conduct an observation towards existing public housing in Jakarta through interview, documentation of existing public housing condition and studying public housing designs through working documents and related standards. Collecting climate data especially wind velocity conducted to get illustration of condition that take place in definite period. Those data then analyzed to produce a model formula of public housing building that tested later with computer. The result of research show that the problems of natural ventilation in low rise public housing can be solved by accurately building design that can adapt with surrounding nature. Quite significant positive change occurs after modification does to the existing unit. Hopefully government through certain official can produce public housing design which more optimal, especially in natural ventilation. People also could knowing the caused of natural ventilation problems inside the room also could solving it by simply, efficiently and accurately through the result of this research. Some advantages occupant could gained are good and prevalent airflow inside the room, reducing air conditioning equipment utilization frequency, less maintenance cost and can it can works all the time.  Keywords: natural ventilation, sun radiation, electricity consumption efficiency, indoor air quality, low rise public housing, wind velocity


2021 ◽  
Vol 16 (3) ◽  
pp. 774-793
Author(s):  
Nur Baitul Izati Rasli ◽  
Nor Azam Ramli ◽  
Mohd Rodzi Ismail

This study observed the influence of different ventilation, indoor and outdoor activities (i.e., cooking, praying, sweeping, gathering, and exhaust from motorcycle) between a bungalow house (i.e., stack and cross ventilation applications) and a terrace house (i.e., one-sided ventilation application). We appraised the indoor air quality (IAQ) and thermal comfort. We monitored the indoor air contaminants (i.e., TVOC, CO, CH2O, PM10, O3, and CO2) and specific physical parameters (i.e., T, RH, and AS) for four days in the morning (i.e., 6.00 a.m. – 9.00 a.m.), morning-evening (i.e., 11.00 a.m. – 2.00 p.m.), and evening-night (i.e., 5.00 p.m. – 8.00 p.m.) sessions. The results found that cooking activities are the major activities that contributed to the increase of the TVOC, CO, PM10, O3, and CO2 concentrations in the bungalow and terrace houses. However, IAQ exceeded the Industry Code of Practice on IAQ (ICOP) limit in the terrace house. The bungalow house applies stack and cross ventilation, double area, and a long pathway of indoor air contaminants movements. Besides that, the results indicated that cooking activities worsen the ventilation system because CO2 exceeded the ICOP limit on Day 2 at 74.1 % (evening-night session) and Day 3 at 13.2 % (morning session), 11% (morning-evening session), and 50.1 % (evening-night session). Moreover, the combination of mechanical (i.e., opened all fans) and natural ventilation (i.e., opened all doors, windows, and fans) is the best application in the house without a cooking ventilator with lower indoor air movement. Furthermore, the temperatures exceeding the ICOP limit of 23-26 °C for both bungalow and terrace houses could be lower indoor air movement, which is less than the ICOP limit of 0.15-0.5 m/s and high outdoor air temperature. Therefore, it is prudent to have an efficient ventilation system for acceptable indoor air quality and thermal comfort in the family house.


2017 ◽  
Vol 70 ◽  
pp. 736-756 ◽  
Author(s):  
Fatemeh Jomehzadeh ◽  
Payam Nejat ◽  
John Kaiser Calautit ◽  
Mohd Badruddin Mohd Yusof ◽  
Sheikh Ahmad Zaki ◽  
...  

2019 ◽  
Vol 111 ◽  
pp. 01023 ◽  
Author(s):  
George-Mãdãlin Chitaru ◽  
Andrei Istrate ◽  
Tiberiu Catalina

Indoor air quality (IAQ) inside educational institutions is an important topic in the field of building and health research. School absenteeism and educational performance have been linked to poor air quality inside classrooms. A numerical simulation software has been used to test 5 different scenarios of natural ventilation during summer and winter. CO2 levels, air relative humidity, operative temperature and PMV were used as indoor air quality and thermal comfort indicators. Results have shown high CO2 and humidity levels when all windows are closed, and a variable improvement when different natural ventilations strategies are employed. A detailed procedure for the numerical simulation has been presented.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 115
Author(s):  
Nishesh Jain ◽  
Esfand Burman ◽  
Samuel Stamp ◽  
Clive Shrubsole ◽  
Roderic Bunn ◽  
...  

Hospitals are controlled yet complex ecosystems which provide a therapeutic environment that promotes healing, wellbeing and work efficiency for patients and staff. As these buildings accommodate the sick and vulnerable, occupant wellbeing and good indoor environmental quality (IEQ) that deals with indoor air quality (IAQ), thermal comfort, lighting and acoustics are important objectives. As the specialist nature of hospital function demands highly controlled indoor environments, this makes them energy intensive buildings due to the complex and varying specifications for their functions and operations. This paper reports on a holistic building performance evaluation covering aspects of indoor air quality, thermal comfort, lighting, acoustics, and energy use. It assesses the performance issues and inter-relationships between IEQ and energy in a new building on a hospital campus in the city of Bristol, United Kingdom. The empirical evidence collated from this case study and the feedback received from the hospital staff help identify the endemic issues and constraints related to hospital buildings, such as the need for robust ventilation strategies in hospitals in urban areas that mitigate the effect of indoor and outdoor air pollution and ensuring the use of planned new low-carbon technologies. Whilst the existing guidelines for building design provide useful instructions for the protection of hospital buildings against ingress of particulate matter from outdoors, more advanced filtration strategies may be required to enact chemical reactions required to control the concentration levels of pollutants such as nitrogen dioxide and benzene. Further lessons for improved performance in operation and maintenance of hospitals are highlighted. These include ensuring that the increasingly available metering and monitoring data in new buildings, through building management systems, is used for efficient and optimal building operations for better IEQ and energy management. Overall, the study highlights the need for an integrated and holistic approach to building performance to ensure that healthy environments are provided while energy efficiency targets are met.


Sign in / Sign up

Export Citation Format

Share Document