scholarly journals Deep eutectic solvents extraction of dibenzothiophene in model diesel

2017 ◽  
Author(s):  
◽  
Huan Jiang

Organic sulfur compounds in diesel fuel produce SOx during combustion in vehicles, leading to severe environmental pollution and causing health issues. The U.S. Environmental Protection Agency has established increasingly rigid sulfur-content standards, which has led to intense interest in deep desulfurization of diesel fuel. However, current desulfurization technology is not sufficient to achieve the ultralow sulfur diesel (ULSD) required for use in highway vehicles. Deep eutectic solvents (DESs) appearing at the beginning of this century have become excellent extraction agents for the deep extractive desulfurization process, owing to its low cost, simple and environmentally friendly synthesis process, chemical stability, non-volatility, and being biodegradable. Research shows that DESs have better efficiency than traditional ionic liquids (ILs). Therefore, DESs are better suited for use in desulfurization. In this study, a new potassium salt-based DES was synthesized using potassium carbonate(K2CO3) and ethylene glycol (EG). This type of DES and 30 wt.% H2O2 were employed as extractant and oxidant separately for the desulfurization system. Various experiments were carried out on the process of oxidative desulfurization (ODS), extractive desulfurization(EDS) and extractive and oxidative desulfurization (EODS) to find the optimal desulfurization process with this new type of DES. The study found EDS to be the optimal desulfurization process, with a sulfur removal efficiency of 86% at 30[degrees]C after 2 hours, which is higher than most DESs.

Fuel ◽  
2011 ◽  
Vol 90 (6) ◽  
pp. 2158-2164 ◽  
Author(s):  
Fábio A. Duarte ◽  
Paola de A. Mello ◽  
Cezar A. Bizzi ◽  
Matheus A.G. Nunes ◽  
Elizabeth M. Moreira ◽  
...  

2014 ◽  
Vol 1033-1034 ◽  
pp. 65-69
Author(s):  
Min Wang ◽  
Qin Wu ◽  
Han Sheng Li ◽  
Yun Zhao ◽  
Qing Ze Jiao

A polyoxometalate-based ionic liquid, 1-(4-sulfonic acid) methylimidazolium phosphotungstate ([MIMBS]3PW12O40), was synthesized and characterized by Fourier transform infrared spectrum, nuclear magnetic resonance, electrospray ionization mass spectrum and thermogravimetric analyzer. [MIMBS]3PW12O40exhibited high activity for the extractive catalytic oxidative desulfurization process, together with H2O2and CH3CN/H2O. The sulfur removal of DBT could reach 99.9% under wild conditions, and the catalyst could be used three times with only a slight decline in activity.


2019 ◽  
Vol 21 (11) ◽  
pp. 3074-3080 ◽  
Author(s):  
Wei Jiang ◽  
Hao Jia ◽  
Hongping Li ◽  
Linhua Zhu ◽  
Runming Tao ◽  
...  

Ternary deep eutectic solvents were used for ODS of fuels (DESs) for the first time although most research continues to be focused on binary DESs.


2006 ◽  
Vol 63 (1-2) ◽  
pp. 85-93 ◽  
Author(s):  
Jeyagowry T. Sampanthar ◽  
Huang Xiao ◽  
Jian Dou ◽  
Teo Yin Nah ◽  
Xu Rong ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yinke Zhang ◽  
Hang Xu ◽  
Mengfan Jia ◽  
Zhuang Liu ◽  
Deqiang Qu

Response surface methodology (RSM) was selected to optimize a desulfurization process with metal based ionic liquids ([Bmim]Cl/CoCl2) and potassium monopersulfate (PMS) together to remove benzothiophene (BT) from octane (simulating oil). The four experimental conditions of PMS dosage, [Bmim]Cl/CoCl2 dosage, temperature, and reaction time were investigated. The results showed that the quadratic relationship was built up between BT removal and four experimental variables with 0.9898 fitting coefficient. The optimal conditions were 1.6 g (20 wt%) PMS solution, 3.2 g [Bmim]Cl/CoCl2, 46°C, and 23 min, which were obtained based on RSM and experimental results. Under the optimal condition, predicted sulfur removal rate and experimental sulfur removal rate were 96.7% and 95.4%, respectively. The sequence of four experimental conditions on desulfurization followed the order temperature > time > [Bmim]Cl/CoCl2 dosage > PMS solution dosage.


2020 ◽  
Vol 394 ◽  
pp. 124831 ◽  
Author(s):  
Wei Jiang ◽  
Kun Zhu ◽  
Hongping Li ◽  
Linhua Zhu ◽  
Mingqing Hua ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 104-111
Author(s):  
Jalil H. Kareem

Aqueous carboxylic acids (CA) are generally used as attractive catalytic extractants in the field of desulfurization of petroleum products. In the present study, a triple system consisting of CA-ferric chloride-hydrogen peroxide has been used for the removal of aromatic S-compounds from partially hydrotreated diesel by liquid−liquid oxidative-extraction. The influence of various operating parameters affecting the oxidative desulfurization was experimentally investigated. Formic acid (HCOOH), acetic acid (CH3COOH), and propanoic acid (CH3CH2COOH) as aqueous solutions with hydrogen peroxide and iron(III) chloride (FeCl3) as oxidant and catalytic agent, respectively, were used. All experiments were carried out at 55°C with different oxidant to sulfur mole ratios (nH2O2/nS) (15–36), CA to sulfur mole ratios (nCA/nS) (2–26), and oxidation reaction times (5–25 min). Within 25 min of the treatment, a maximum elimination of aromatic S-compounds of 65.1% was obtained when molar ratio of oxidant to sulfur (nH2O2/nS) was 36 and molar ratio of CA to sulfur (nCA/nS) was 26. Surface tension calculations for the CAs demonstrated that the average void radius of the acids has a pronounced effect on the fitting of S-compounds from diesel fuel into acids and is important to sulfur removal. Further, increasing the desulfurization efficiency was also energetically affected in the presence of ferric halide. The obtention of the sulfur removal ability value was noticeably higher than was achieved by employing similar reaction conditions in the absence of FeCl3.


Sign in / Sign up

Export Citation Format

Share Document