Pluton source varition over two magmatic pulses in the white-inyo range, central-eastern California : implications for paleozoic and mesozoic tectonic reconstructions

2018 ◽  
Author(s):  
◽  
Elizabeth M Kenderes

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] This dissertation uses compositions of plutons in the White-Inyo Range (WIR) of central-eastern California, which is an important tectonic boundary as it is the easternmost extent of the Mesozoic Cordilleran arc and the western edge of Basin and Range extension. The main goal of this dissertation is to understand the lithospheric structure of this area in relation to the broader regional tectonics. Chapters 2 and 3 specifically investigate the Eureka Valley-Joshua Flat-Beer Creek (EJB) composite arc pluton, from its source to emplacement. The EJB pluton is one of a small number of monzonitic plutons cotemporally emplaced with the primarily calc-alkaline North American Mesozoic Cordilleran arc. Mineral major and trace element compositions are used to show the crystallization sequence and pressures and temperatures of mineral crystallization. These data are used to make interpretations about the EJB pluton's formation from source to emplacement. Additionally, whole rock major and trace element compositions and isotopic data show that the EJB pluton has a unique source from the calc-alkaline plutons: an underplated, eclogitized oceanic island arc. Chapter 4 is a regional study of the WIR, and it includes whole rock major and trace element and isotopic data to interpret the three distinct sources of plutons: (1) the eclogitized oceanic island arc, (2) enriched lithospheric mantle, and (3) Proterozoic North American basement. Recognizing the timing of the generation of these plutons in relation to their sources is crutial to understanding the tectonic history of the WIR area. This dissertation presents tectonic model for western North America from the Early Proterozoic to Late Cretaceous

1999 ◽  
Vol 36 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Ralf O Maxeiner ◽  
Tom II Sibbald ◽  
William L Slimmon ◽  
Larry M Heaman ◽  
Brian R Watters

This paper describes the geology, geochemistry, and age of two amphibolite facies volcano-plutonic assemblages in the southern Hanson Lake Block and southeastern Glennie Domain of the Paleoproterozoic Trans-Hudson Orogen of east-central Saskatchewan. The Hanson Lake assemblage comprises a mixed suite of subaqueous to subaerial dacitic to rhyolitic (ca. 1875 Ma) and intercalated minor mafic volcanic rocks, overlain by greywackes. Similarly with modern oceanic island arcs, the Hanson Lake assemblage shows evolution from primitive arc tholeiites to evolved calc-alkaline arc rocks. It is intruded by younger subvolcanic alkaline porphyries (ca. 1861 Ma), synvolcanic granitic plutons (ca. 1873 Ma), and the younger Hanson Lake Pluton (ca. 1844 Ma). Rocks of the Northern Lights assemblage are stratigraphically equivalent to the lower portion of the Hanson Lake assemblage and comprise tholeiitic arc pillowed mafic flows and felsic to intermediate volcaniclastic rocks and greywackes, which can be traced as far west as Wapawekka Lake in the south-central part of the Glennie Domain. The Hanson Lake volcanic belt, comprising the Northern Lights and Hanson Lake assemblages, shows strong lithological, geochemical, and geochronological similarities to lithotectonic assemblages of the Flin Flon Domain (Amisk Collage), suggesting that all of these areas may have been part of a more or less continuous island arc complex, extending from Snow Lake to Flin Flon, across the Sturgeon-Weir shear zone into the Hanson Lake Block and across the Tabbernor fault zone into the Glennie Domain.


2021 ◽  
Author(s):  
Christos Karkalis ◽  
Andreas Magganas ◽  
Petros Koutsovitis ◽  
Theodoros Ntaflos

<p>In Central Evia island (Aegean-Greece) serpentinized ultramafic rocks appear as elongated thrust sheets or in the form of olistostromes incorporated within Maestrichtian-Paleocene flysch. These are crosscut by well-developed rodingite dykes that were derived from four main protoliths that include i) Boninites, ii) Island-arc Tholeiitic Basalts and Gabbros, iii) Alkaline basalts and iv) Calc-alkaline basalts. They mainly comprise of minerals that include (hydro)garnet + chlorite + clinopyroxene ± vesuvianite. Accessory minerals include spinel ± calcite ± prehnite ± amphibole ± orthopyroxene ± olivine ± quartz ± opaque Fe-Ti oxides. Rodingites that were formed at the expense of boninites and island-arc tholeiitic rocks were likely formed within a single rodingitization stage, since garnet is mainly grossular-rich and relict primary clinopyroxene has been preserved. The rodingitization of the alkaline and calc-alkaline basalts seems to have occurred as a multi-stage metasomatic process that occurred during the exhumation of the mafic-ultramafic mantle wedge complex. This resulted in the development of late-stage andradite, vesuvianite and in some cases of chlorite during derodingitization. In this case, successive reaction zones with variability in the participating mineral phases were developed.  Geochemical results reveal remarkable rare earth element (REE) enrichments, especially in the inner zones, likely being the result of successive diffusion and element transfer. Few rodingites are characterized as calcite-bearing, whose stable <sup>13</sup>C-<sup>18</sup>O isotopic data points to the restricted involvement of late-stage mixed hydrothermal and seawater-related carbonation processes.</p>


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
Kyaw Linn Zaw ◽  
Lucas Donny Setijadji ◽  
I Wayan Warmada ◽  
Koichiro Watanabe

Granitoid rock compositions from a range of tectonic environments are plotted on a multicationic diagram, based on major and trace element geochemistry and K-Ar dating. This shows that there is a different tectonic nature, rock affinity and suites. The basement granitoid rocks are ranging from diorite to granite composition. They appear to the products of crystallization differentiation of a calc-alkaline magma of island affinity and range to metaluminous granites, granodiorite and tonalite. The tectonic setting has two kinds which are subduction and post-subduction. The geochemical interpretation, origin and melting of mechanism and tectonic setting shows the types of granitoid are M and I-M type. The basement of granite and granodiorite are a segment of island arc that were happened the Sintang Intrusion as post subduction or syn-collision tectonic setting. Keywords: Petrogenetic, tectonic, affinity, Sintang Intrusion, Kalimantan


2019 ◽  
Author(s):  
C. Mark Fanning ◽  
◽  
Francisco Hervé ◽  
Mauricio N. Calderón ◽  
Robert J. Pankhurst ◽  
...  

2021 ◽  
Author(s):  
S J Piercey ◽  
J -L Pilote

New high precision lithogeochemistry and Nd and Hf isotopic data were collected on felsic rocks of the Rambler Rhyolite formation from the Ming volcanogenic massive sulphide (VMS) deposit, Baie Verte Peninsula, Newfoundland. The Rambler Rhyolite formation consists of intermediate to felsic volcanic and volcaniclastic rocks with U-shaped primitive mantle normalized trace element patterns with negative Nb anomalies, light rare earth element-enrichment (high La/Sm), and distinctively positive Zr and Hf anomalies relative to surrounding middle rare earth elements (high Zr-Hf/Sm). The Rambler Rhyolite samples have epsilon-Ndt = -2.5 to -1.1 and epsilon-Hft = +3.6 to +6.6; depleted mantle model ages are TDM(Nd) = 1.3-1.5 Ga and TDM(Hf) = 0.9-1.1Ga. The decoupling of the Nd and Hf isotopic data is reflected in epsilon-Hft isotopic data that lies above the mantle array in epsilon-Ndt -epsilon-Hft space with positive ?epsilon-Hft values (+2.3 to +6.2). These Hf-Nd isotopic attributes, and high Zr-Hf/Sm and U-shaped trace element patterns, are consistent with these rocks having formed as slab melts, consistent with previous studies. The association of these slab melt rocks with Au-bearing VMS mineralization, and their FI-FII trace element signatures that are similar to rhyolites in Au-rich VMS deposits in other belts (e.g., Abitibi), suggests that assuming that FI-FII felsic rocks are less prospective is invalid and highlights the importance of having an integrated, full understanding of the tectono-magmatic history of a given belt before assigning whether or not it is prospective for VMS mineralization.


2006 ◽  
Vol 11 ◽  
pp. 101-114 ◽  
Author(s):  
Henrik Stendal ◽  
Karsten Secher ◽  
Robert Frei

Pb-isotopic data for magnetite from amphibolites in the Nagssugtoqidian orogen, central West Greenland, have been used to trace their source characteristics and the timing of metamorphism. Analyses of the magnetite define a Pb-Pb isochron age of 1726 ± 7 Ma. The magnetite is metamorphic in origin, and the 1726 Ma age is interpreted as a cooling age through the closing temperature of magnetite at ~600°C. Some of the amphibolites in this study come from the Naternaq supracrustal rocks in the northern Nagssugtoqidian orogen, which host the Naternaq sulphide deposit and may be part of the Nordre Strømfjord supracrustal suite, which was deposited at around 1950 Ma ago. Pb-isotopic signatures of magnetite from the Arfersiorfik quartz diorite in the central Nagssugtoqidian orogen are compatible with published whole-rock Pb-isotopic data from this suite; previous work has shown that it is a product of subduction-related calc-alkaline magmatism between 1920 and 1870 Ma. Intrusion of pegmatites occurred at around 1800 Ma in both the central and the northern parts of the orogen. Pegmatite ages have been determined by Pb stepwise leaching analyses of allanite and monazite, and source characteristics of Pb point to an origin of the pegmatites by melting of the surrounding late Archaean and Palaeoproterozoic country rocks. Hydrothermal activity took place after pegmatite emplacement and continued below the closure temperature of magnetite at 1800– 1650 Ma. Because of the relatively inert and refractory nature of magnetite, Pb-isotopic measurements from this mineral may be of help to understand the metamorphic evolution of geologically complex terrains.


2020 ◽  
Author(s):  
Jin-Gen Dai ◽  
et al.

Detailed analytical methods in Text S1, major- and trace-element compositions of clinopyroxene, orthopyroxene, and amphibole, whole-rock major and trace elements, Sr-Nd isotopic data, and zircon U-Pb and Lu-Hf data in Tables S1–S7; Figures S1–S5.


Sign in / Sign up

Export Citation Format

Share Document