Rodingitization of mafic rocks from Central Evia (Greece) associated with serpentinite exhumation: Evidence from Petrological, Geochemical and Isotopic data 

Author(s):  
Christos Karkalis ◽  
Andreas Magganas ◽  
Petros Koutsovitis ◽  
Theodoros Ntaflos

<p>In Central Evia island (Aegean-Greece) serpentinized ultramafic rocks appear as elongated thrust sheets or in the form of olistostromes incorporated within Maestrichtian-Paleocene flysch. These are crosscut by well-developed rodingite dykes that were derived from four main protoliths that include i) Boninites, ii) Island-arc Tholeiitic Basalts and Gabbros, iii) Alkaline basalts and iv) Calc-alkaline basalts. They mainly comprise of minerals that include (hydro)garnet + chlorite + clinopyroxene ± vesuvianite. Accessory minerals include spinel ± calcite ± prehnite ± amphibole ± orthopyroxene ± olivine ± quartz ± opaque Fe-Ti oxides. Rodingites that were formed at the expense of boninites and island-arc tholeiitic rocks were likely formed within a single rodingitization stage, since garnet is mainly grossular-rich and relict primary clinopyroxene has been preserved. The rodingitization of the alkaline and calc-alkaline basalts seems to have occurred as a multi-stage metasomatic process that occurred during the exhumation of the mafic-ultramafic mantle wedge complex. This resulted in the development of late-stage andradite, vesuvianite and in some cases of chlorite during derodingitization. In this case, successive reaction zones with variability in the participating mineral phases were developed.  Geochemical results reveal remarkable rare earth element (REE) enrichments, especially in the inner zones, likely being the result of successive diffusion and element transfer. Few rodingites are characterized as calcite-bearing, whose stable <sup>13</sup>C-<sup>18</sup>O isotopic data points to the restricted involvement of late-stage mixed hydrothermal and seawater-related carbonation processes.</p>

2018 ◽  
Author(s):  
◽  
Elizabeth M Kenderes

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] This dissertation uses compositions of plutons in the White-Inyo Range (WIR) of central-eastern California, which is an important tectonic boundary as it is the easternmost extent of the Mesozoic Cordilleran arc and the western edge of Basin and Range extension. The main goal of this dissertation is to understand the lithospheric structure of this area in relation to the broader regional tectonics. Chapters 2 and 3 specifically investigate the Eureka Valley-Joshua Flat-Beer Creek (EJB) composite arc pluton, from its source to emplacement. The EJB pluton is one of a small number of monzonitic plutons cotemporally emplaced with the primarily calc-alkaline North American Mesozoic Cordilleran arc. Mineral major and trace element compositions are used to show the crystallization sequence and pressures and temperatures of mineral crystallization. These data are used to make interpretations about the EJB pluton's formation from source to emplacement. Additionally, whole rock major and trace element compositions and isotopic data show that the EJB pluton has a unique source from the calc-alkaline plutons: an underplated, eclogitized oceanic island arc. Chapter 4 is a regional study of the WIR, and it includes whole rock major and trace element and isotopic data to interpret the three distinct sources of plutons: (1) the eclogitized oceanic island arc, (2) enriched lithospheric mantle, and (3) Proterozoic North American basement. Recognizing the timing of the generation of these plutons in relation to their sources is crutial to understanding the tectonic history of the WIR area. This dissertation presents tectonic model for western North America from the Early Proterozoic to Late Cretaceous


2006 ◽  
Vol 11 ◽  
pp. 101-114 ◽  
Author(s):  
Henrik Stendal ◽  
Karsten Secher ◽  
Robert Frei

Pb-isotopic data for magnetite from amphibolites in the Nagssugtoqidian orogen, central West Greenland, have been used to trace their source characteristics and the timing of metamorphism. Analyses of the magnetite define a Pb-Pb isochron age of 1726 ± 7 Ma. The magnetite is metamorphic in origin, and the 1726 Ma age is interpreted as a cooling age through the closing temperature of magnetite at ~600°C. Some of the amphibolites in this study come from the Naternaq supracrustal rocks in the northern Nagssugtoqidian orogen, which host the Naternaq sulphide deposit and may be part of the Nordre Strømfjord supracrustal suite, which was deposited at around 1950 Ma ago. Pb-isotopic signatures of magnetite from the Arfersiorfik quartz diorite in the central Nagssugtoqidian orogen are compatible with published whole-rock Pb-isotopic data from this suite; previous work has shown that it is a product of subduction-related calc-alkaline magmatism between 1920 and 1870 Ma. Intrusion of pegmatites occurred at around 1800 Ma in both the central and the northern parts of the orogen. Pegmatite ages have been determined by Pb stepwise leaching analyses of allanite and monazite, and source characteristics of Pb point to an origin of the pegmatites by melting of the surrounding late Archaean and Palaeoproterozoic country rocks. Hydrothermal activity took place after pegmatite emplacement and continued below the closure temperature of magnetite at 1800– 1650 Ma. Because of the relatively inert and refractory nature of magnetite, Pb-isotopic measurements from this mineral may be of help to understand the metamorphic evolution of geologically complex terrains.


2014 ◽  
Vol 6 (2) ◽  
pp. 36 ◽  
Author(s):  
Nedal Qaoud

Geochemistry of gabbroid and granitoid plutonites from the Um Had area indicates island arc subalkaline basic magma with tholeiitic affinity and calc-alkaline, metaluminous and slightly peraluminous magma, respectively. Although different in age both plutonite types were emplaced under compressional regime, where subduction-related environment was dominant. They were formed under relatively low to moderate water-vapour pressure (1–5 k-bars) at moderate depths (20–30 km). Biotite granites were formed at a relatively high temperature range (800–840 °C), while biotite-muscovite granites were formed under relatively moderate temperature conditions (760–800 °C). These two units may represent evolution from island arc to active continental margin. It is suggested that island arc gabbros might have sourced the late subduction-related calc-alkaline granitoids during the waning stages of the pan-African orogeny. The I-type nature of the investigated plutonites in the study area and elsewhere suggests the juvenile character of the basement complex of the Eastern Desert of Egypt.


2008 ◽  
Vol 145 (4) ◽  
pp. 463-474 ◽  
Author(s):  
SHEN LIU ◽  
RUI-ZHONG HU ◽  
CAI-XIA FENG ◽  
HAI-BO ZOU ◽  
CAI LI ◽  
...  

AbstractGeochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.


1995 ◽  
Vol 32 (11) ◽  
pp. 1883-1898 ◽  
Author(s):  
Marcus C. Tate ◽  
D. Barrie Clarke

Late Devonian (377–368 Ma, 40Ar/39Ar; 376 Ma, U–Pb) mafic intrusions in the Meguma Zone crop out as dykes, plugs, and synplutonic bodies of gabbro, diorite, or lamprophyre. All of the intrusions have similar lithologie characteristics and hydrous ferromagnesian mineral assemblages, and they appear to represent a genetically related series of mafic bodies with similar petrogenetic histories in the crust of the Meguma Zone. The intrusions show wide chemical variation of SiO2 (45.7–65.7 wt.%), Al2O3 (8.9–26.5 wt.%), MgO (2.8–26.5 wt.%), CaO (1.2–11.2 wt.%), and K2O (0.1–4.4 wt.%), and they have calc-alkaline, high-K calc-alkaline, and shoshonitic characteristics. Large-ion lithophile elements (LILE) are present at variable but high concentrations (e.g., Ba = 62–1920 ppm, Sr = 176–2567 ppm) relative to most high field strength element (HFSE) abundances (e.g., Y = 10–37 ppm, Zr = 8–421 ppm), and light rare-earth elements (LREE) have much higher concentrations than heavy rare-earth elements (HREE) (La/Lu = 24–330). Initial Sr isotopic ratios (0.7044–0.7079) and εNd values (−4.36 to 3.69) are highly variable. Scatter on major oxide variation diagrams probably results from the fractionation of all the major modal phases in the intrusions (olivine, augite, hornblende, and (or) plagioclase), and the cumulate characteristics of some bodies support this suggestion. Nevertheless, parallel patterns for the intrusions on mid-ocean ridge basalt (MORB) normalized spider diagrams support the notion of similar mafic parent melts, and Sr–Nd isotopic data identify contamination by continental crust in only one of the intrusions. The most primitive picrite contains approximately basaltic HFSE in conjunction with HREE at 5–11CN, perhaps suggesting that the magmas emanated from depleted peridotite or pyroxenite, but high alkalies, LILE (<60MN), and LREE (10–100CN), and elevated initial Sr ratios in all of the intrusions, also require the existence of an enriched source component. Troughs in the spider diagrams at Ta, Nb, and Ti, and Sr–Nd isotopic values comparable with modern island-arc basalts, suggest that fluids derived from subducted ocean lithosphère metasomatized the mantle. Tectono-magmatic discriminators imply a continental margin arc environment rather than an island arc, and the intrusions record either Early Devonian subduction of Iapetus Ocean lithosphère beneath the Avalon terrane, Middle Devonian subduction of Theic Ocean lithosphère beneath the Meguma terrane, or an inherited subduction signature formed during a much older event.


1999 ◽  
Vol 36 (2) ◽  
pp. 209-225 ◽  
Author(s):  
Ralf O Maxeiner ◽  
Tom II Sibbald ◽  
William L Slimmon ◽  
Larry M Heaman ◽  
Brian R Watters

This paper describes the geology, geochemistry, and age of two amphibolite facies volcano-plutonic assemblages in the southern Hanson Lake Block and southeastern Glennie Domain of the Paleoproterozoic Trans-Hudson Orogen of east-central Saskatchewan. The Hanson Lake assemblage comprises a mixed suite of subaqueous to subaerial dacitic to rhyolitic (ca. 1875 Ma) and intercalated minor mafic volcanic rocks, overlain by greywackes. Similarly with modern oceanic island arcs, the Hanson Lake assemblage shows evolution from primitive arc tholeiites to evolved calc-alkaline arc rocks. It is intruded by younger subvolcanic alkaline porphyries (ca. 1861 Ma), synvolcanic granitic plutons (ca. 1873 Ma), and the younger Hanson Lake Pluton (ca. 1844 Ma). Rocks of the Northern Lights assemblage are stratigraphically equivalent to the lower portion of the Hanson Lake assemblage and comprise tholeiitic arc pillowed mafic flows and felsic to intermediate volcaniclastic rocks and greywackes, which can be traced as far west as Wapawekka Lake in the south-central part of the Glennie Domain. The Hanson Lake volcanic belt, comprising the Northern Lights and Hanson Lake assemblages, shows strong lithological, geochemical, and geochronological similarities to lithotectonic assemblages of the Flin Flon Domain (Amisk Collage), suggesting that all of these areas may have been part of a more or less continuous island arc complex, extending from Snow Lake to Flin Flon, across the Sturgeon-Weir shear zone into the Hanson Lake Block and across the Tabbernor fault zone into the Glennie Domain.


2000 ◽  
Vol 137 (5) ◽  
pp. 537-553 ◽  
Author(s):  
ROBERT J. THOMAS ◽  
JOACHIM JACOBS ◽  
BRUCE M. EGLINGTON

Whole-rock major and trace element geochemical and Rb–Sr/Sm–Nd isotopic data are presented for the Mesoproterozoic (∼1.0 Ga) metamorphic and igneous rocks of the Cape Meredith Complex, West Falkland. The data indicate that the oldest rocks, the ∼1.1 Ga supracrustal gneisses of the Big Cape Formation, which form three petrographic and geochemical groups (mafic amphibolite, quartz–plagioclase–biotite–hornblende intermediate gneiss and acid gneiss), probably represent a juvenile calc-alkaline, basalt–andesite–rhyolite volcanic sequence, with epsilon (εNdT) values and NdTDM ages of ∼+3 to +6 and ∼1100 to 1400 Ma respectively. It is argued on geochemical grounds that these metavolcanics were extruded in an island-arc at around 1120 Ma. The Big Cape Formation was intruded by granitoids during and after a collisional orogenic event at around 1090 Ma. The oldest, foliated, (G1) granodiorite was emplaced as thin sheets at approximately 1090 to 1070 Ma and is characterized by εNd values of ∼+1.5 to 4 (TDM = ∼1200 to 1400 Ma), showing its juvenile nature. The ∼1070 Ma (G2) syntectonic granitoid gneisses and ∼1000 Ma G3 post-tectonic granites also exhibit juvenile characteristics (εNd = ∼0 to +5 and TDM = 2200 to 1200 Ma, respectively). The granitoids show a time-composition evolution from Na-rich (G1) granodiorite to potassic, high-High Field Strength Element granites (G3). The geochemical and isotopic characteristics and geological evolution of the Cape Meredith Complex is comparable with that of the adjacent Gondwana crustal blocks in Natal (SE Africa) and Dronning Maud Land (East Antarctica), supporting models that demonstrate these areas evolved in a contiguous, juvenile arc environment prior to, and during, a major orogenic event at ∼1.1 Ga. These events were associated with the birth of the Rodinian supercontinent. The three areas remained juxtaposed during Rodinia break-up and were subsequently incorporated into Gondwana in the same relative positions.


Intensely metamorphosed and deformed basic dykes, the Ameralik dykes, have been used to divide the amphibolite-facies gneisses of the Godthåb district into the Amitsoq gneisses (older) and the Nuk gneisses. Metavolcanic and metasedimentary rocks (the Malene supracrustals), and stratiform meta-anorthosites are also present and are probably younger than the Amitsoq gneisses, but are older than the Nuk gneisses. The Amitsoq gneisses contain abundant fragments of Ameralik dykes. They appear to have been derived from homogeneous granitic (s.l.) parents, but most of them have been intensely reworked before and/or after the intrusion of the Ameralik dykes and are now banded gneisses. They range from dioritic to granitic in composition and potassic varieties are common. Isotopic data indicate that the parent rocks of the gneisses were emplaced or metamorphosed about 3750 Ma ago. Ameralik dykes are absent from the Nuk gneisses, which are the most abundant rocks in the area. These gneisses are derived from intrusive calc-alkaline parents, mainly tonalites and granodiorites, and represent a massive addition of granitic material to this level of the crust about 3080 Ma ago, after the first supracrustal rocks had been laid down.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2054-2057
Author(s):  
Xue Long Liu ◽  
Na Zhang ◽  
Jian Kang

Geza arc is the important parts of Yidun island arc in southwest of Sanjiang tectonic magmatic belts, it located in the southern tip of the Yidun island arc, which is a newly discovered copper polymetallic ore concentration area in the recently years in China. Based on the development stage of island arc orogenic, the distribution of intrusive rocks, composition, geochemical characteristics, Geza island arc granits belt can be divided into three belts. Geza island arc several typical porphyry deposits Pb isotopic data show that Pb206/Pb204 17.680~19.165, Pb207/Pb204 15.453~15.773,change in scope, Pb208/Pb204 37.730~39.654. Most of samples are normal lead, Pb isotopes focused on the side of orogenic evolution line and the lower crust range,with the characteristics of crust-mantle mixed source.


Sign in / Sign up

Export Citation Format

Share Document