scholarly journals Entropy minimization, convergence, and Gibbs ensembles (local and global)

2021 ◽  
Author(s):  
◽  
Alexander M. Hughes

We approach the subject of Statistical Mechanics from two different perspectives. In Part I we adopt the approach of Lanford and Martin-Lof. We examine the minimization of information entropy for measures on the phase space of bounded domains, subject to constraints that are averages of grand canonical distributions. We describe the set of all such constraints and show that it equals the set of averages of all probability measures absolutely continuous with respect to the standard measure on the phase space. We also investigate how the set of constrains relates to the domain of the microcanonical thermodynamic limit entropy. We then show that, for fixed constraints, the parameters of the corresponding grand canonical distribution converge, as volume increases, to the corresponding parameters (derivatives, when they exist) of the thermodynamic limit entropy. In Part II, we use the Banach manifold structure on the space of finite positive measures to show that the critical points of the Gibbs entropy are grand canonical equilibria when the constraints are scalar, and local equilibria when the constraints are integrable functions. This provides a rigorous justification of the derivation of the Gibbs measures that appears often in literature.

2007 ◽  
Vol 16 (07n08) ◽  
pp. 2229-2234
Author(s):  
LUDWIK TURKO

Finite volume corrections to higher moments are important observable quantities. They make possible to differentiate between different statistical ensembles even in the thermodynamic limit. It is shown that this property is a universal one. The classical grand canonical distribution is compared to the canonical distribution in the rigorous procedure of approaching the thermodynamic limit.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Dan Lascu ◽  
Gabriela Ileana Sebe

We investigate the efficiency of several types of continued fraction expansions of a number in the unit interval using a generalization of Lochs theorem from 1964. Thus, we aim to compare the efficiency by describing the rate at which the digits of one number-theoretic expansion determine those of another. We study Chan’s continued fractions, θ-expansions, N-continued fractions, and Rényi-type continued fractions. A central role in fulfilling our goal is played by the entropy of the absolutely continuous invariant probability measures of the associated dynamical systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Damian Kołaczek ◽  
Bartłomiej J. Spisak ◽  
Maciej Wołoszyn

AbstractThe coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.


Author(s):  
Jean Zinn-Justin

The functional integral representation of the density matrix at thermal equilibrium in non-relativistic quantum mechanics (QM) with many degrees of freedom, in the grand canonical formulation is introduced. In QM, Hamiltonians H(p,q) can be also expressed in terms of creation and annihilation operators, a method adapted to the study of perturbed harmonic oscillators. In the holomorphic formalism, quantum operators act by multiplication and differentiation on a vector space of analytic functions. Alternatively, they can also be represented by kernels, functions of complex variables that correspond in the classical limit to a complex parametrization of phase space. The formalism is adapted to the description of many-body boson systems. To this formalism corresponds a path integral representation of the density matrix at thermal equilibrium, where paths belong to complex spaces, instead of the more usual position–momentum phase space. A parallel formalism can be set up to describe systems with many fermion degrees of freedom, with Grassmann variables replacing complex variables. Both formalisms can be generalized to quantum gases of Bose and Fermi particles in the grand canonical formulation. Field integral representations of the corresponding quantum partition functions are derived.


Author(s):  
Terrence George

Abstract Groves are spanning forests of a finite region of the triangular lattice that are in bijection with Laurent monomials that arise in solutions of the cube recurrence. We introduce a large class of probability measures on groves for which we can compute exact generating functions for edge probabilities. Using the machinery of asymptotics of multivariate generating functions, this lets us explicitly compute arctic curves, generalizing the arctic circle theorem of Petersen and Speyer. Our class of probability measures is sufficiently general that the limit shapes exhibit all solid and gaseous phases expected from the classification of ergodic Gibbs measures in the resistor network model.


Sign in / Sign up

Export Citation Format

Share Document